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Supporting Infectious Disease Prevention Policy through 
Spatiotemporal Simulation Model

Jaesoen Son

will reach thousands next week, it is more practical to suggest 

what social distancing policies will work in an area of interest. 

If the effects of social distancing policies are presented in a 

detailed level in terms of time and space through scientific 

methodologies, it will be possible to reduce the antipathy 

towards social distancing and induce more active participation. 

Considering this, we propose a simulation method that can 

predict the effect of government response policies to prevent 

the spread of infectious diseases such as COVID-19, and derive 

the necessary future tasks through demonstration.

2.	 Simulation methodology and empirical results 
to judge policy effectiveness

█ ‌�Policy simulation methodology and data structure

The policy simulation model (Figure 1) first analyzes the 

level changes in social distancing, derives the cycle of major 

level change, and starts by calculating the level stringency 

of domestic prevention policies. Using the epidemiological 

investigation data of the Korea Disease Control and Prevention 

Agency (KDCA), the number of confirmed cases by city/county/

district and the infection route is calculated. Using this data, the 

number of confirmed cases on a nationwide scale is predicted 

with a random forest model, that is, a machine learning 

model. By inputting the expected number of confirmed 

cases nationwide into the distribution model, the number of 

confirmed cases by city/county/district and the infection route 

is calculated. Finally, by simulating the type and stringency of 

the prevention policy, the expected number of confirmed cases 

by region03 and by infection route are predicted, and through 

this, the effect of social distancing is compared by policy type, 

stringency level, and region. The data of the simulation model 

consists of eight matrices consisting of time (x-axis), 250 

municipalities (y-axis), and eight government policies (z-axis), 

and one matrix of the number of confirmed cases (see Figure 

2).Figure 1 Figure 2

whether an infectious disease spread is the basic reproduction 

number, that is, the number of secondary infections that 

the first infected person can cause on an average. The SIR01 

model, which is a representative mathematical model, predicts 

the macroscopic changes in the number of infected people 

over time by applying key parameters affecting the spread of 

the disease, such as infection and recovery rates, to an entire 

country or region.

In recent times, the development of micro-models is 

accelerating due to the development of computer technology 

and the explosive increase in the available data. For example, 

various mobility indicators help explore spatially different 

changes in mobility along with time-series changes in daily 

life due to COVID-19. Additionally, indicators for measuring 

the effectiveness of quarantine policies were developed. For 

example, OxCGRT02 provides a comprehensive stringency index 

based on the quantification of policy responses to compare 

various government responses to COVID-19.

█ ‌�Predicting policy effect through simulation

A general prediction of the number of confirmed cases 

has a limitation in that the quarantine policy cannot provide 

a spatial and temporal prediction that can be applied to a 

detailed spatial unit where an individual's real life takes place. 

“Social distancing” was initially applied to a wide range 

of regions and groups, which caused damage to the local 

economy and increased antipathy due to continued control; 

thus, increasing social stress. In the end, it is difficult to resolve 

the dissatisfaction of the general public subjected to social 

distancing, unless treatment for infected patients is generalized 

through the development and dissemination of therapeutic 

agents.

Rather than predicting that the number of confirmed cases 

1.	 A global pandemic and the need for new 
policy simulations

█ ‌�The rapidly spreading COVID-19 and social distancing

Unl i ke  the  ex i s t ing  co ronav i ruses ,  COVID-19  i s 

characterized by mutations in the spikes that come into contact 

with the respiratory epithelial cells resulting in high transmission 

rate, rapid worsening of symptoms, and rapid spread to other 

organs (OpenWHO; Ahn, 2021). Although COVID-19 has 

spread all over the world, the health systems and quarantine 

policies in different countries have made a big difference in the 

rate of increase and decrease in the number of confirmed cases 

and associated deaths (Cacciapaglia et al. 2021). The initial 

strict lockdown policies drastically reduced people's mobility 

slowing the spread of COVID-19. However, the lockdown policy 

was lifted in stages due to various socio-economic side effects 

caused by the prolonged lockdown. Korea has implemented 

social distancing as a policy in response to COVID-19, and has 

suggested precautions to be observed by individuals, facilities, 

and in workplaces. In accordance with the standards for 

limiting the spread of infectious diseases and the occurrence of 

confirmed cases, we are implementing step-by-step preventive 

measures such as social distancing in advance.

█ ‌�Traditional mathematical models and latest research 

trends 

The traditional way to predict the spread of an infectious 

disease uses a mathematical model. A mathematical model 

refers to the description of a real phenomenon with the help of 

a mathematical expression; for the construction and simulation 

of such models, the application of mathematical, statistical, and 

numerical calculation techniques is required. In a mathematical 

model, the most important indicator used to determine 

Note
Epidemiological Survey 

database is provided by 

KDCA (Korea Disease 

Control and Prevention 

Agency); Business 

database is collected 

from localdata.go.kr.

Source
Son, et al. (2021, 222).

Figure 1. Structure of policy simulation methodology

01.	 Susceptible-Infected-Recovered.
02.	 The Oxford Covid-19 Government Response Tracker, Blavatnik School of Government, University of Oxford. 03.	 Administrative districts at the municipal level (city/county/district).
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█ ‌�Data preparation and simulation models

To demonstrate the simulation model of the COVID-19 

prevention policy, first, regular briefings by the Ministry of 

Health and Welfare, changes in the social distancing system, 

and level adjustment documents for each city/county/district 

were collected and organized accordingly. Based on the eight 

detailed prevention policies from January 20, 2020 to April 6, 

2021 in 250 cities/counties/districts, the daily stringency was 

calculated by referring to the changes in the level of social 

distancing and preventive policy guidelines (Table 1). The 

number of confirmed cases was calculated using the data on 

the number of daily confirmed cases, collected and managed 

by the KDCA during the same period.

The method of predicting the national frequency of 

confirmed cases starts with constructing input variables using a 

random forest model and identifying the correlations between 

variables. The random forest model adjusts the predictive 

power of a model while collecting and developing a set of 

causal relationships between the variables in an ensemble form. 

The number of confirmed cases by day, region, and infection 

route was assumed as the dependent variable, and the change 

in stringency of eight policies by day and region was assumed 

as the independent variable. The model for predicting the 

occurrence of confirmed cases was configured to calculate in 

terms of one-week units from the one-week average to the 

four-week average. The distribution model was constructed to 

be proportional to the ratio of the number of past confirmed 

cases in the city/county/district. In addition, the simulation 

process included allocating the number of confirmed cases in 

consideration of the density of facilities located in the relevant 

city/county/district related to the route of infection. Table 1

█ ‌�Simulation demonstration results 

The prediction of the number of confirmed cases on a 

nationwide scale showed a pattern very similar to the actual 

value. The true and predicted values were more similar to the 

result of the four-week average number of confirmed cases 

than that of the one-week average. Regarding the relative 

influence according to the route of infection, “workplace” and 

“religious facility” showed the highest relative influence. The 

relative influence of “correctional institute” and “unclassified” 

showed an increasing trend toward long-term prediction. On 

simulating the stringency of religious facilities and workplaces, 

it was found that the higher the stringency, the higher is the 

Table 1. Stringency of prevention policy and social distancing levels

Note 1 During the period when social distancing was operated as a three-level system, levels 1, 2, and 3 of the five-level system were applied as it is.

Note 2 Modified from the Ministry of Health and Welfare (2020, 48-50). 

Source Son, et al. (2021, 115).

Government policy Level 1 Level 1.5 Level 2 Level 2.5 Level 3

Mandatory mask-wearing 1 2 3 4 4

Restrictions on meetings and events 1 2 3 4 5

Restrictions on attending sports events 1 2 3 4 5

Restrictions on using transportation facilities 1 1 2 3 4

Restrictions on attending school 1 2 3 4 5

Restrictions on religious activities 1 2 3 4 5

Restrictions on job work 1 2 2 3 4

Restrictions on multi-use facilities 1 2 3 4 5

Table 2. ‌�Simulation result of the number of confirmed cases by infection route according to the level 
adjustment for each prevention policy

Source
Son, et al. (2021, 182).

Unit: person

Simulation
Nursing 
facilities

Medical 
institutions

Religious 
facilities

Educational 
institutes

Total

Restrictions on religious activity-Level 1 224.39 203.68 418.20 173.21 1,019.48

Restrictions on religious activity-Level 5 722.87 908.72 261.44 16.97 1,910.00

Restrictions on job work-Level 1 220.34 203.79 406.05 170.89 1,001.07

Restrictions on job work-Level 4 723.19 908.48 261.29 17.05 1,910.01

Figure 2. Schematic diagram of policy simulation data

Note ‌�For national data, we used the Korean data from the OxCGRT GitHub public data; for the city, county, and district level data, we used the combined data from the Central Quarantine 

Countermeasures Headquarters Information Analysis Team (2021) and the Ministry of Health and Welfare press releases on COVID-19.

Source Son, et al. (2021, 116).

Figure 3. ‌�Examples of distribution pattern by city, county, and district as a result of simulation (Restrictions on religious 
activity-Level: Infection route) 

Source Son, et al. (2021, xiv).
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prepare an environment that can comprehensively collect 

and share infectious disease-related data, analysis methods, 

and results. In addition, it is necessary to enable the use of 

standardized information by reviewing the types of infection 

route information and collection and use systems. Lastly, 

in accordance with the Infectious Disease Prevention and 

Management Act, it is necessary to prepare more detailed 

systems to respond and manage the infectious diseases using 

data analysis and information and communication technology.

Jaesoen Son 
Associate Research Fellow

Geospatially Enabled Society Research Division
jsson@krihs.re.kr

average number of confirmed cases. This is presumed to reflect 

the reality of policy implementation by raising the level of social 

distancing after the increase in the number of confirmed cases.

The scenario for the distribution model assumes the 

number of confirmed cases nationwide as 2,000, and raises the 

stringency of “restrictions on religious activity” and “restrictions 

on job work” to level 5 and level 4, respectively. The number 

of confirmed cases by infection route was predicted. For 

both “restrictions on religious activity” and “restrictions on 

job work,” it was predicted that more than 95% of the total 

number of confirmed cases would occur intensively in the four 

infection routes (nursing facilities, medical institutions, religious 

facilities, and educational institutes) (Table 2). When the 

stringency was increased compared to level 1, the occurrence 

was concentrated in medical institutions and nursing facilities. 

Geographically, in the case of level 1 restrictions on religious 

activity, a large number of outbreaks were expected to center 

on the metropolitan area. However, when the “restriction on 

religious activity” is raised to level 5, the geographical scope 

of the outbreak area is limited and it is predicted that the 

outbreak will occur on a fairly large scale in a small number of 

areas (Figure 3). Table 2 Figure 3

3.	 Implications and future challenges

The implications that can be drawn from the policy 

simulation model and demonstration are as follows. First, 

through policy simulation, the importance of adjusting the 

social distancing level regardless of the type of prevention policy 

was presented. Second, in order to increase the effectiveness 

of the preventive policies, the necessity of preparing flexible 

prevention policies in consideration of the actual conditions 

of each region was confirmed by subdividing the factors that 

cause regional deviations. Finally, this simulation model can 

support the predictions of the possible outbreak areas and 

the routes of spread; hence, it was confirmed that this model 

can be used to support the transition from a response after an 

outbreak to a management system following a pre-emptive 

response.

In future research, i t  i s  necessary to improve the 

predictive power and logical explanations of the simulation 

model. Further research on applicable simulation models and 

expansion of policies applicable to the simulation are also 

needed. Considering the fact that COVID-19-related research 

is being conducted at various institutions, it is necessary to 
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If the effects of social distancing policies are presented 
in a detailed level in terms of time and space through scientific 

methodologies, it will be possible to reduce the antipathy towards 
social distancing and induce more active participation.
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the DL mechanism can learn and predict even minor details 

that cannot be detected by human intelligence. DL models 

that have completed learning are able to derive highly accurate 

results within just a few seconds even with a high volume of 

input data. Thus, DL models are highly regarded worldwide for 

identifying real-time trip demand using observed traffic volume.

4.	 Research design for Pure-inTention

The purpose of this study was to develop a model for 

predicting trip demand for each origin/destination and its 

purpose using real-time flow information (i.e., observed traffic 

volume), establish a trip demand estimation model using 

purpose-based DL of the developed model's pattern, and 

ultimately develop policy tools to seek measures for gradual 

recovery in the post-pandemic period. The characteristics of 

spaces related to trip demand according to purpose were 

analyzed by combining public and private big data, and the 

analyzed characteristics were linked using observed traffic 

volume-based trip demand estimation model by origin and 

destination. Subsequently, temporal and spatial (regional and 

daily) pre- and post-pandemic data patterns, such as confirmed 

cases, social distancing information, and real-time road traffic 

information were combined with a DL model and trip demand 

estimation model by each trip purpose. The developed model 

was then used to understand the causal relationship between 

trip patterns and the purpose of trip that have changed post-

pandemic and derive preemptive post-pandemic response 

policies. 

The Pure-inTention model presented in this study consisted 

of four steps (Table 1). The first step was data integration, 

which involved collecting various data from public and private 

sources into the same space units such as town, township, 

and neighborhood. In the second step, factor analysis of the 

collected spatial unit data was performed to identify local 

attraction factors according to each purpose of trip. In this 

particular step, various machine learning (ML) models such 

as a multidimensional data reduction algorithm and random 

forest were used. The third step clustered the attraction factors 

according to purpose to derive the key contributing factors for 

each cluster. The last step was the prediction step, and two 

models, A and B, are presented. Model A measures the effects 

of infectious diseases by learning the trip demand patterns 

according to purpose from the observed pre-pandemic traffic 

volume and predicts the effects using post-pandemic traffic 

volume by region. The model suggests differences between the 

predicted and actual trip patterns by region and trip purpose; 

regions where the predicted trip pattern according to purpose 

differed significantly from the actual observed trip pattern were 

selected for analysis of the key factors in ML fashion. Model B 

estimates trip sensitivity for each purpose according to changes 

in regional social distancing policies. After learning the changes 

in social distancing and number of confirmed cases in region 

level as well as trip demand information by purpose following 

the spread of infectious disease, the sensitivity of observed 

traffic volume with respect to changes in social distancing was 

estimated by region and trip purpose.01 Table 1

01.	 Changes in social distancing policies by region included ① mandatory wearing of masks, ② restrictions on gatherings and events, ③ restrictions on 
attending and watching sports, ④ restrictions on the use of transportation facilities, ⑤ restrictions on physical school attendance, ⑥ restrictions on 
religious activities, ⑦ restrictions on on-site work, and ⑧ restrictions on multi-use facilities. Data based on OxCGRT by Son et al. (2021) were used. Ox-
CGRT: COVID-19 Government Response Tracker provided by Blavatnik School of Government, University of Oxford (Son et al., 2021, 95).

Note
PCA, principal 

component 

analysis; UMAP, 

uniform manifold 

approximation and 

projection; GAN, 

generative adversarial 

networks; DNN, deep 

neural network; GA, 

genetic algorithm.

Source
Prepared by the 

author.

Table 1. ‌�General process for Pure-inTention 

Step Descriptions Methodologies & Models

I Data integration into the same space unit (i.e., jurisdictional level) Data analytic (with data fusion)

II Factor analysis to identify trip attraction factors for each trip purpose PCA, random forest, UMAP

III Classify space units by similar characteristics of each space K-means clustering, random forest

IV

Model development

GAN, DNNs, Frank-Wolf algorithm, 
Dijkstra’s algorithm, random forest, 

GA

Model A Pandemic effect measurement

Model B
Trip (by purpose) sensitivity analysis during pandemic against policy 
deployment

1.	 Introduction 

The high transmission rate of new infectious respiratory 

diseases is characterized by rapid and contact-dependent 

infection. In response to the recently identified infectious 

respiratory diseases, the government implemented policies to 

prevent the spread of disease in facilities for group gatherings, 

which may lead to personal quarantine. These timely policies 

included reduced business hours for restaurants and 2-meter 

social distancing, which seemed to have had some effect in 

preventing the spread of the infectious respiratory diseases in 

the early stages. However, unified quarantine measures that 

did not consider regional characteristics led to unintended 

consequences such as deterioration of the local economy 

and domestic market. Current quarantine policies focus on 

controlling the density of activity spaces rather than considering 

the reasons for traveling to specific spaces, which have led 

to prolonged quarantine policies and consequences such as 

fatigue and balloon effects. Quarantine policy measures based 

on identifying the causal relationship of trip patterns and 

the purpose of trip rather than forcibly regulating the spatial 

density are expected to provide tailored policies for different 

regions and alleviate the unintended consequences of the 

current quarantine policies.

2.	 Trip demand according to purpose

Each trip from an origin to a destination has its own 

purpose and is achieved as the interaction between spatial 

service characteristics and corresponding demand reach 

an equilibrium. Trip makers decide to their trip for various 

purposes such as commuting to work or school, shopping, 

and socializing. Understanding the purpose of trip can 

provide important information not only for the current trip 

but also for predicting future travel patterns. Traditionally, the 

Korean National Household Travel Survey has been conducted 

detailed travel demand with comprehensive information 

in terms of purpose, means, and space. However, as the 

survey is conducted only every 5 years, it is limited with 

respect to immediately solving problems including real-time 

monitoring of the infectious diseases. Recently, studies using 

floating population big data from mobile phone base station 

information have been reported. While, these studies have 

critical issues such as privacy concerns in the process of data 

acquisition and purification and wasteful spending to purchase 

high-priced nationwide data.

3.	 Deep learning-based trip demand 
identification according to purpose using 
observed link counts

The recent development of infrastructure for collecting 

traffic counts on the road and the advancement of the trip 

demand prediction algorithm have enabled near real-time 

monitoring of travel demand; this led to identification of trip 

demand according to origin and destination. In accordance with 

the Intelligent Transportation System (ITS) and related policies, 

vehicle detectors on roads across the country produce real-

time nationwide traffic volume information. The real-time trip 

demand estimation model using the observed traffic volume, 

which had limitations due to hardware performance, have been 

integrated with advanced methodologies such as deep learning 

(DL) for various ways. The DL mechanism that allows the model 

to learn a causal relationship pattern between an input value 

and output (or phenomenon) can rapidly recognize and derive 

reasonable results for repeated similar problems. In addition, 

02 Pure-inTention: A Study on Deep Learning-based Purpose-
driven Trip Demand Estimation Model for Post-Pandemic 
Countermeasures

Yohan Chang
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Figure 1. An example of Pure-inTention

Cluster #1
Cluster #2
Cluster #3
Cluster #4
Cluster #5
Cluster #6
Cluster #7
Cluster #8
Cluster #9
Cluster #10
NA

(A) Clustering Example of Work Trip

(C) Example of Model B (Work Trip)

(B) Example of Model A (Work Trip)

Note  ‌�(A) Clustering based on commute to work. (B) The x-axis represents the ground truth of the trip rate, and the y-axis represents the estimated trip rate according to Model A (cluster 2);  

(C) The x-axis represents the level of social distancing for each policy, and the y-axis represents the trip rate (cluster 2).

Source  (A) Prepared by the author using QGIS; (B) Prepared by the author; (C) Prepared by the author using R.
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5.	 Data integration and pre-processing for Pure-
inTention

Eleven different types of data were used to predict trip 

demand according to purpose and the impact of the infectious 

disease: 1) trip demand according to purpose; 2) GIS road 

network; 3) traffic volume counts (in static) 4) population by 

sex, age, and region; 5) national business address book; 6) 

national corporate network data; 7) household credit data; 

8) mobile phone-based floating population data; 9) dynamic 

traffic volume (in dynamic) 10) confirmed COVID-19 patient 

records; and 11) changes in social distancing. The purpose, 

source, update frequency, and provider of each data type are 

shown in Table 2. Mobile floating information data included 

statistical data of mobile population movement, provided by 

Statistics Korea in collaboration with SK Telecom. The Korea 

Transport Database (KTDB) provides seven purposes of trip: 

1) returning home, 2) going to work, 3) working, 4) going 

to school, 5) shopping, 6) leisure activity, and 7) others. All 

data were classified in the units of town, township, and 

neighborhood, and analyzed using open sources such as R, 

Python, and postgreSQL.02 Table 2

6.	 Experimental results and conclusion

Figure 1 is a schematic showing partial results calculated 

using the presented Pure-inTention model. Figure 1A shows 

the results of clustering based on the purpose of commuting 

to work. The results of clustering by city, county, district or 

town, township, and neighborhood without specific prior 

information on the region show various characteristics of 

each region in South Korea. Figure 1B is a scatter diagram 

of Model A after applying cluster 2, among different clusters 

derived from Figure 1A. The x-axis represents the actual trip 

rate confirmed by the floating population data, and the y-axis 

shows the trip rate predicted by Model A. As the dispersion 

value of each axis converges diagonally, there are no changes 

in the post-pandemic compared with the pre-pandemic trip 

pattern. The area of ① depicts where a high post-pandemic 

trip rate was observed, although a low trip rate was expected 

pre-pandemic, and the area of ② represents the opposite case. 

The sensitivity of the regions to changes in the social distancing 

policy were as follows. As shown in the graph for sensitivity of 

trip rate according to remote work policies of Model B in Figure 

1C, the trip rate tended to decrease when the level of social 

distancing was low. However, as the remote work policy level 

increased from level 2 to level 3, the trip rate increased rapidly. 

The regions included in the relevant cluster (cluster 2) mainly 

02.	 Mobile communication population movement statistics data (https://data.kostat.go.kr, accessed February 21, 2022).

Note
NHTS, National 

Household Travel 

Survey; AADT, annual 

average daily traffic; 

KTDB, Korea Transport 

Database; TMS, 

Traffic Monitoring 

System; KED, Korea 

Enterprise Data; KCB, 

Korea Credit Bureau; 

KDCA, Korea Disease 

Control and Prevention 

Agency; MoHW, 

Ministry of Health 

and Welfare of South 

Korea.

Source
Prepared by the 

author.

Table 2. ‌�Overview of study data  

No. Data Purpose Source
Data update 

frequency
Provider

1 Trip by purpose (NHTS) Trip purpose (general)
KTDB Every 5 years

Public

2 GIS network Road network

3 AADT Average traffic counts TMS

Annual
4 Demographic

Geo-factor analysis

Statistics 
Korea

5 Business information DBRIA 
Daily

Private6 Industry information KED

7 Credit information KCB Every 3 months

8 Movement observation from mobile data Trip purpose (dynamic)
Statistics 

Korea
Hourly

Public
9 Dynamic traffic observation Traffic counts (dynamic) TMS Every 30 minutes

10 COVID-19 confirmed cases Effect of COVID-19 KDCA
Daily

11 Social distancing information Policy HoHW
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1.	 Introduction

█ ‌�Changes needed in the current system of COVID-19 

outbreak monitoring

Following the first confirmed case of coronavirus disease 

2019 (COVID-19), the infection spread rapidly and was 

declared a global pandemic by the World Health Organization 

(WHO) in March 2020. After several waves of COVID-19 and a 

prolonged pandemic in South Korea, “Living with COVID-19" 

was announced in November 2021, increasing the autonomous 

authority and responsibility of local governments and individuals 

as well as the national government, in responding to the 

infectious disease. However, the current system for COVID-19 

outbreak monitoring (hereafter, ‘COVID-19 monitoring’) still 

focuses on aggregate statistics of cases and deaths at the 

provincial and municipal levels. Thus, local governments, 

in charge of regional prevention policies, and the general 

public face difficulties in understanding the latest COVID-19 

developments and risk levels in their local communities and 

neighborhoods.

█ ‌�Efforts needed to improve the detailedness of COVID-19 

monitoring

To accept that COVID-19 is a pandemic that can continue 

to manifest itself—rather than regard it as a temporary 

infectious disease—and respond in more sustainable ways, 

people should be able to access and communicate each other 

with authorized information from one central source of the risk 

and current status of COVID-19 outbreaks. And this information 

should be detailed enough for local governments and residents, 

the direct actors in responding to the infectious disease, to 

figure out the real danger of disease transmission in their 

local communities. In this article we argue that improving the 

spatial precision or detailedness of the COVID-19 monitoring 

system could be the first step in initiating community-level 

communications of COVID-19 risks. To justify this argument, 

we refined the spatial unit of COVID-19 monitoring from the 

current Si-Gun-Gu (province-county) level to the Eup-Myeon-

Dong level. We then analyzed the spatio-temporal patterns 

of COVID-19 cases at the Eup-Myeon-Dong level to show the 

benefits and policy implications of such attempts in COVID-19 

monitoring. 

2.	 Current status of COVID-19 monitoring in 
South Korea

█ ‌�From online maps and disclosure of contact tracing 

information of confirmed cases to sharing and text 

notification of case statistics by Si-Gun-Gu

In the early stages of the pandemic, the COVID-19 

monitoring system was centered around online COVID-19 

maps voluntarily managed by citizens and disclosure of contact 

tracing information of confirmed cases. As COVID-19 began to 

spread more rapidly, the national government posted outbreak 

trends on the COVID-19 website (http://ncov.mohw.go.kr/). 

This website was linked with COVID-19 websites of local 

governments to provide statistics on the number of confirmed 

03 Current Status and Improvement Directions of COVID-19 
Outbreak Monitoring: Based on An Analysis of New Cases 
by Eup-Myeon-Dong in 2020 and 202101

Myunghwa Hwang

01.	 This article was based on “An analysis of spatio-temporal patterns of COVID-19 cases to better inform public responses to infectious diseases,” a collabora-
tive research project between KRIHS and Korea Disease Control and Prevention Agency (Hwang Myunghwa, Son Jaeseon, Lee Kunkak, 2022). The project 
was carried out to produce policy evidence from a geospatial perspective of better COVID-19 monitoring from September 2021 to early February 2022. 
Some contents of this article may not reflect the most up-to-date situations of COVID-19 and prevention policies that have changed since February 2022. 

had high numbers of wholesale and retail businesses based on 

corporate network information, information on the distribution 

of the number of trading companies in the region, and the 

average distance between companies in the manufacturing 

trading network.03 

In this study, the Pure-inTention model presented a 

framework for evaluating changes in pre- versus post-pandemic 

preferences through deep learning and data, which were 

previously investigated through surveys. The Pure-inTention 

model also suggested the possibility of real-time nationwide 

monitoring. In particular, the model analyzed changes in pre- 

and post-pandemic trip patterns by region throughout the 

country, which were limited in previous studies. Figure 1

Yohan Chang 
Associate Research Fellow | Manager

Geospatial Analysis & Monitoring Center | KRIHS Data Lab
ycanns@krihs.re.kr

03.	 The mean square error of Model A was 8.0E-06, suggesting that the model had been precisely trained.
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█ ‌�Identifying hot spots of concern in terms of disease 

spread in local communities

In addition to analyzing the incidence distribution pattern 

by Eup-Myeon-Dong, we extracted hot spots where regions 

of high incidence rates were spatially adjacent and the local 

spread of COVID-19 could be of concern for each COVID-19 

wave.03 We also examined emerging regions that showed signs 

of becoming new hot spots with high numbers of COVID-19 

Source Created by the author. 

Figure 1. Distribution of cumulative crude incident rates (all age groups) of COVID-19 by Eup-Myeon-Dong

(a) First wave (2/18–5/5/2020)

(c) Third wave (11/13/2020–1/20/2021)

(b) Second wave(8/12–11/12/2020) 

(d) Fourth wave(6/27–10/30/2021)

03.	 We used the Getis-Ord Gi* statistics, a method for spatial cluster analysis.
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cases at the level of Si-Do (metropolitan cities and province). 

This information was also made available on Internet portals 

and mobile applications, such as Naver and Daum. However, 

the disclosure of confirmed case contact tracing posted on 

local government websites caused various side issues and was 

soon discontinued. Instead, the local government notified 

citizens of the statistics regarding confirmed cases in the district 

via disaster text messages. When the national government 

announced “Living with COVID-19,” the COVID-19 website 

was revised and the COVID-19 monitoring system was changed 

once more. Confirmed case alert texts, which were previously 

sent to residents multiple times per day depending on the local 

government, were replaced with a daily text on confirmed cases 

within the district. In addition, statistics of confirmed cases by 

Si-Do began to be provided also in the spatial units of Si-Gun-

Gu(county and district). 

█ ‌�Difficult to know the infection status within local 

communities with the statistics of confirmed cases by 

Si-Do and Si-Gun-Gu

In the second half of 2021, the statistics of confirmed 

COVID-19 cases by Si-Do started to be provided in spatial units 

of Si-Gun-Gu. However, considering that the main actors of 

disease response in local communities were local governments 

and residents, they faced difficulties identifying and adequately 

responding to infectious disease outbreaks in local communities 

based on statistics by Si-Gun-Gu. 

3.	 An empirical analysis of COVID-19 cases by 
Eup-Myeon-Dong

█ ‌�Analyzing the COVID-19 outbreak distribution pattern 

by Eup-Myeon-Dong 

In a study by Hwang et al. (2022), which is the basis of this 

article, the data of 496,585 confirmed COVID-19 cases—from 

January 19, 2020, to December 9, 2021—were acquired with 

the cooperation of the Korea Disease Control and Prevention 

Agency to analyze the distribution of the cumulative COVID-19 

crude rate in the level of Eup-Myeon-Dong. From the source 

data, the records of 398,478 confirmed cases02 were used if 

each record had a valid COVID-19 diagnosis date, the reported 

status as a domestic infection, and a valid address enough to 

identify which Eup, Myeon, or Dong it belonged to. They were 

then aggregated by the administrative units of Eup-Myeon-

Dong in 2020.

To analyze the pattern of the COVID-19 outbreak by the 

spatial units of Eup, Myeon,  and Dong,  the Ministry of the 

Interior and Safety’s resident registration populations for each 

unit as of November 30, 2021, were used as the population 

at risk, and the cumulative crude incidence rate (hereafter, 

incidence rate)—the cumulative number of confirmed cases 

per 100,000 people—was calculated. During the study period, 

the national incidence rate was 780 cases per 100,000 people, 

and the mean incidence rate by Eup-Myeon-Dong was 629 

cases per 100,000 people. In particular, 1 Dong in Danwon-Gu, 

Ansan-Si, Gyeonggi-Do; 1 Dong in Guro-Gu, Seoul; 1 Dong 

in Gwangsan-Gu, Gwangju; 1 Dong in Gangdong-Gu, Seoul; 

and 1 Dong in Dongducheon-Si, Gyeonggi-Do, had a mean 

incidence rate of over 5,000 cases. 

We also analyzed the distribution of confirmed cases 

for each wave of COVID-19 based on reports by Jang et al. 

(2021), Kim (2021), and other media articles. The incidence 

rates in the first wave were relatively high in Nam-Gu/Seo-

Gu in Daegu and Cheongdo-Gun, Gyeongsangbuk-Do, 

due to the so-called Daegu-Si Shincheonji incidence. In the 

second wave, the incidence rates were high in Pocheon-Si 

and Yeoju-Si in Gyeonggi-Do and Suncheon-Si in Jeollanam-

Do. In the third wave, the incidence rates were relatively high 

in Gwangsan-Gu in Gwangju, Jincheon-Gun, and Eumseong-

Gun in Chungchungbuk-Do; Yeoncheon-Gun in Gyeonggi-Do; 

and Gimje-Si in Jeollabuk-Do. In the fourth wave, the incidence 

rates were high in many cities, counties, and districts within 

the metropolitan area (Figure 1, Table 1a). Furthermore, in the 

analysis of incidence rates by wave in groups of patients under 

the age of 10 who were exempt from mandatory vaccination 

in the early stages of vaccinations in 2021 (Table 1b), areas of 

high incidence rates were different from those for the entire 

population. These results indicate that high-risk areas at the 

level of Eup-Myeon-Dong varied by waves as well as by age 

groups. Figure 1 Table 1 

02.	 Information on confirmed COVID-19 cases in South Korea was manually collected before home treatment was implemented and information on con-
firmed cases was collected through a mobile app. As a result, only approximately 79.9% of the source data could be identified by Eup, Myeon, Dong 
through address-refining and geocoding (process of converting addresses into coordinate values).
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Source Created by the author. 

Figure 2. COVID-19 hot spots in the first to third waves (all age groups)

(a) Emerging hot spots identified 
at the beginning of the first wave (2/22/20)

(c) Emerging hot spots 
at the beginning of the second wave (8/15/20)

(e) Emerging hot spots 
at the beginning of the third wave (11/14/20)

(b) Hot spots in the first wave (2/18-5/5/20)

(d) Hot spots in the second wave (8/12-11/12/20)

(f) Hot spots in the third wave (11/13/20–1/20/21)
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cases immediately before each wave started, and compared 

the results to those identified from the hot spot analysis.04 If an 

emerging region was identified as a hot spot, that region could 

be considered an early signal that the disease might spread 

locally around its nearby areas.

Our analysis showed that some emerging hot spots by Eup-

Myeon-Dong were indicative of actual regions with high risks 

and concern of a local COVID-19 spread, and that a significant 

number of hot spots were located across several Sis, Guns, and 

Gus. At the beginning of the first wave, emerging hot spots 

were detected in Daegu and neighboring regions, as well as in 

border regions of Gyeongsangbuk-Do and Chungcheongbuk-

Do. Some of these regions were found to  be actually high-risk 

hot spots with high numbers of COVID-19 cases during the first 

wave. Emerging hot spots at the beginning of the second wave 

included regions in Seoul, northern Gyeonggi-Do, and Gwangju. 

Of these, areas in Seoul and northern and central Gyeonggi-

Do were identified as belonging to the hot spots in the second 

wave. Additionally, the area of Seoul, Incheon, and parts of 

northern Gyeonggi-Do as well as the Gyeonggi-Chungnam-

Gangwon border region were detected as both emerging hot 

spots just before the beginning of the third wave and high-

risk hotspots during the same period, showing some spatial 

overlap (Figure 2). Although the detection of emerging hot 

spots by wave was not completely accurate, this method may be 

developed into a tool for early detection of areas with concern 

of local spread of infectious diseases if further efforts are made 

for the tuning of parameters such as the analysis period, hot 

spot requirements, and other analysis options. Figure 2 

Source 

Created by the author. 

Table 1. ‌�Eup-Myeon-Dong units with the highest incidence rates of COVID-19 

 COVID-19
Waves

(a) All age groups (b) Under the age of 10

First wave 
(2/18–5/5/20)

2 Dongs in Nam-Gu and 1 Dong in Seo-Gu, Daegu
1 Eup in Cheongdo-Gun, Gyeongsanbuk-Do
( >1,000 cases per 100,000 )

1 Dong in Nam-Gu, Daegu
1 Myeon in Yecheon-Gun, Gyeongsangbuk-do
( >2,000 cases per 100,000 )

Second wave
(8/12–11/12/20)

1 Myeon in Pocheon-Si, Gyeonggi-Do
1 Myeon in Yeoju-Si, Gyeonggi-Do
1 Myeon in Suncheon-si, Jeollanam-Do
( >500 cases per 100,000 )

1 Myeon in Jeongeup-Si, Jeollabuk-Do
1 Myeon in Pocheon-Si, Gyeonggi-Do
1 Myeon in Suncheon-Si, Jeollanam-Do
1 Myeon in Gwangju-Si, Gyeonggi-Do
( >1,000 cases per 100,000 )

Third wave 
(11/13/20–1/20/21)

1 Dong in Gwangsan-Gu, Gwangju
1 Myeon in Jincheon-Gun, Chungcheongbuk-Do
1 Myeon in Eumseong-Gun, Chungcheongbuk-Do
1 Myeon in Yeoncheon-Gun, Gyeonggi-Do
1 Myeon in Gimje-si, Jeonllabuk-Do
( >2,000 cases per 100,000)

1 Myeon in Yeoncheon-Gun, Gyeonggi-Do
1 Myeon in Pocheon-Si, Gyeonggi-Do
1 Myeon in Yeongwol-Gun, Gangwon-Do
1 Myeon in Hamyang-Gun, Gyeongsangnam-Do
( >2,000 cases per 100,000)

Fourth wave
(6/27–10/30/21)

1 Dong in Danwon-Gu, Ansan-Si, Gyeonggi-Do
2 Dongs in Guro-Gu, Seoul
1 Myeon in Ongjin-Gun, Incheon
1 Myeon in Sunchang-Gun, Jeollabuk-Do
1 Dong in Yeongdeungpo-Gu, Seoul
1 Myeon in Gwangju-Si, Gyeonggi-Do
1 Dong in Gangnam-Gu, Seoul
1 Dong in Pyeongtaek-Si, Gyeonggi-Do
1 Dong in Jongno-Gu, Seoul
2 Dongs in Siheung-Si, Gyeonggi-Do
1 Dong in Yeonsu-Gu, Incheon
1 Dong in Gangdong-Gu, Seoul
( >2,000 cases per 100,000)

1 Myeon in Sunchang-Gun, Jeollabuk-Do
1 Myeon in Ongjin-Gun, Incheon
1 Dong in Danwon-Gu, Ansan-Si, Gyeonggi-Do
1 Dong in Jung-Gu, Busan
1 Dong in Guro-Gu, Seoul
1 Myeon in Gwangju-Si, Gyeonggi-Do
1 Myeon in Goseong-Gun, Gyeongsangnam-Do
1 Dong in Jongno-Gu, Seoul
1 Dong in Yeosu-Si, Jeollanam-Do
( >4,000 cases per 100,000)

04.	 We used the prospective space-time scan statistic, a method for conducting a spatiotemporal cluster analysis.
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the current monitoring system that focuses on aggregate 

statistics in the level of Si-Gun-Gu. 

As  discussed above, refining the spatial unit of disease 

monitoring to the level of Eup-Myeon-Dong  may be an 

effective alternative for improving COVID-19 monitoring. This 

is because the main actors of disease prevention such local 

governments and residents concern and can affect their local 

communities, i.e., Eup-Myeon-Dongs or smaller areas, and 

sharing information on the spread of infectious disease in the 

level of local communities can help such actors monitor areas of 

high risks or with early signs of local disease spread and identify 

areas where cross-regional, collaborative measures should be 

taken for effective diseases response. 

Detailed or precise monitoring of infectious disease 

outbreaks may be a cornerstone for  a sc ient i f ic  and 

communication-oriented disease prevention system. Such 

system, however, cannot exist without an infrastructure that 

can collect and share data rapidly, in a standardized fashion 

and with location information. As address information of 

confirmed cases before home treatment was not collected 

in a standardized format, monitoring local COVID-19 cases 

could not be performed in a timely manner. In addition, 

although the local governments sought to cooperate each 

other for quarantine measures, sharing information with 

other local governments was difficult. For precise monitoring 

of infectious diseases in the future, the national government 

must preemptively establish an infrastructure that can enable 

the quick collection, linkage, integration, and analysis of 

standardized data on confirmed cases, tested individuals, and 

vaccinated individuals. 

Myunghwa Hwang 
Research Fellow
KRIHS Data Lab

mhhwang@krihs.re.kr

█ ‌�Detailed monitoring by Eup-Myeon-Dong helps identify 

areas of high-risk as well as areas of concern for local 

disease spread 

Our findings show that increasing the spatial precision of 

COVID-19 monitoring to the units of Eup-Myeon-Dong, from 

the current units of Si-Gun-Gu enables the identification of 

high-risk regions within Si-Gun-Gu. In addition, they indicate 

that the new system may allow timely and early detection of 

areas with signs of disease spread within local communities and 

beyond the boundaries of local governments. As substantial 

efforts are ongoing to reduce the burden of disease prevention 

due to the prolonged COVID-19 pandemic, the new monitoring 

system that can detect regions of high risks or with symptoms 

of local disease spread would strengthen such efforts by 

providing useful data evidence for decision making related 

to allocation of quarantine resources and establishment of 

collaborative and cross-regional measures for disease response 

among local governments. Residents can also benefit from 

such system by referring to its results when making personal 

decisions with regard to taking preventive measures, such as 

wearing masks, or planning where to visit. 

4.	 Conclusion: Suggestions for improved 
COVID-19 monitoring  

█ ‌�Need community-level disease monitoring and data 

infrastructure for it

Experiencing the emergence and spread of COVID-19, 

many experts say that new infectious diseases would appear 

more frequently and continuously in the future. For a more 

effective response against the constant danger of new 

infectious diseases and the facilitation of social communication 

regarding the risk of these diseases, it is essential to improve 
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