인공지능과 공간정보가 함께하는 미래사회

The Future of Geospatial AI

2018 ICGIS २.७.२.१४ नुम्लावर्यच्यत्वे	
인공지능과 공간정보	가
The Future	

인공지능과 공간정보가 함께하는 미래사회

The Future of Geospatial Al

2018.

9

우 국토연구원 KRIHS

S

 귀도고통부 Ministry of Land, 2018. 9. 13(THU.) 10:00~17:30

코엑스 컨퍼런스룸(남) 308호 COEX Conference Room(South) 308

The Future of Geospatial AI

Smart Geospatial Expo 2018 근이髙 스마트국토엑스포

인공지능과 공간정보가 함께하는 미래사회

The Future of Geospatial AI

2018. 9. 13(THU.) 10:00~17:30

코엑스 컨퍼런스룸(남) 308호 COEX Conference Room(South) 308

2018 ICGIS Programs

The Future of Geospatial Al				
인공지능과 공간정보가 함께하는 미래사회				
09:30~10:00	Registration 등록			
10:00~10:10	Opening Remarks/ Hyun-Soo Kang, President of KRIHS 개회사/ 국토연구원 강현수 원장			
	Congratulatory Address / Woo-Jun Son, Director General for Spatial Information Policy Bureau at MOLIT 축사/국토교통부 손우준 국토정보정책관			
Session 1 : What is Geospatial Al				
	세션 1 : 공간정보 기반 인공지능			
10:10~10:40	Keynote Speech 1 "Place in Geographic Information Science"/ Stephan Winter, Professor, The University of Melbourne			
	기조연설 1 "공간정보 과학기술에서의 장소"/ 스테판 윈터 , 호주 멜번대학 교수			
10:40~11:10	"New Approaches to Space-Time Analytics of Human Dynamics" / <i>May Yuan,</i> Professor, The University of Texas at Dallas			
	"휴먼 다이나믹스의 시공간 패턴 분석을 위한 새로운 접근방법"/ 메이 유안 , 텍사스(달라스) 대학 교수			
11:10~11:40	"New Business Models integrating Artificial Intelligence and Geospatial Information" / <i>Kyoung-Jun Lee,</i> Professor, Kyung Hee University			
	"인공지능과 공간정보를 융합한 새로운 비즈니스 모델"/ 이경전 , 경희대학 교수, 벤플 대표			
11:40~13:30	Lunch 점심			
	Session 2: New and Smart Geospatial Information Industries with Al			
	세선 2 : 인공시등을 융합한 새로운 노선과 산업신흥			
13:30~14:00	"Geo Al for Smart New Industries"/ Brett Dixon, General Manager, Asia Pacific at ESRI			
	기조연설 2 "신산업 창출을 위한 Geo AI의 역할"/ 브레트 딕손, ESRI 아시아 태평양지부 총괄매니저			
14:00~14:30	"Al for Smart Mobility" / Seung-II You, Head of Datalab, Kakao Mobility			
	· 스마트 모빌리티를 위한 AI~/ 유승일, 카카오모빌리티 네이터랩상			
14:30~15:00	/ Yoshiki Ogawa, Project Researcher, The University of Tokyo			
	"공간정보와 머신러닝 -일본사례를 중심으로-"/ 요시키 오가와 , 도쿄대학 생산기술연구소 특임연구원			
15:00~15:30	"Cloud-powered Machine Learnings on Geospatial Services - From the Earth to Your Home" / Channy Yun, Tech Evangelist, Amazon Web Service Korea			
	"공간정보 서비스를 위한 클라우드 기반 머신러닝 활용" / 윤석찬, 아마존웹서비스코리아 테크에반젤리스트			
15:30~16:00	"A Deep Learning Approach for Simulating Urban Development"/ Donghan Kim, Research Fellow, KRIHS			
	"딥러닝을 적용한 도시시뮬레이션"/ 김동한, 국토연구원 연구위원			
16:00~16:20	Coffee break 휴식			
Round-Table Meeting 종합토론				
16:20~17:30	Round Table Meeting Moderator: <i>Min-Hwa Lee,</i> Chairman, KCERN(Korea Creative Economy Research Network) 좌장: 이민화, 창조경제연구회 이사장			

Closing 폐회

Keynote & Speaker

Stephan Winter, The University of Melbourne

Stephan Winter is Professor for Spatial Information Science in the Department of Infrastructure Engineering at The University of Melbourne.

His areas of research interest include wayfinding and navigation, intelligent transportation systems and computational transportation science.

He has also worked in the fields of mobile geosensor networks, smart cities (mobility, urban analytics), spatial cognitive engineering, spatial data mining and geographic information retrieval. His recent research in marrying the human and vague concept of place with the formal requirements of information systems aims to improve user interaction, especially voice assistants, with information systems.

Brett Dixon, Asia Pacific at ESRI

As the general manager for Asia Pacific at Esri, Brett Dixon is recognised as an authority on enterprise geospatial strategies. Brett has been working in the geospatial intelligence realm for almost two decades. He's passionate about using GIS and geomatics to assist in national security, emergency and recovery, and disaster response.

Now, he advises many agencies throughout the Asia Pacific region, leveraging his GIS skills and national security knowledge to stay ahead of geospatial trends and challenges.

Aside from his duty as a general manager, he was appointed as a member of global advisory board of Geospatial Media and Communications since 2017.

May Yuan, The University of Texas at Dallas

May Yuan is Ashbel Smith Professor of Geospatial Information Sciences in the School of Economic, Political, and Policy Sciences at the University of Texas at Dallas.

Her research interest expands upon space-time representation and analytics to understanding geographic dynamics. Over the years, she has been working to develop approaches to represent and model geographic processes and events in GIS databases to support space-time query, analytics, and knowledge discovery.

Yoshiki Ogawa, The University of Tokyo

Yoshiki Ogawa is Project Researcher for Spatial Information Science and Institute of Industrial Science at The University of Tokyo. His area of research is Big data analysis of GIS data and developing integrated simulation system of gigantic earthquake and tsunami disasters. He utilizes data from mobile phones GPS and various GIS data to observe and

measure people phenomena in our urban/rural regions and develop and apply simulation models to understand the past and predict the future disaster damage by integrated simulation.

Kyoung-Jun Lee, Benple Inc., Kyung Hee University

Kyoung-Jun Lee is tenured professor of Information Systems at Business School, Kyung Hee University, Seoul, Korea.

He is a member of Government 3.0 Committee (vice-minister level) and plays a role of Information Sharing and Collaboration Committee Chair.

He has been also working as a head of IoT/IoE Division of the public-private partnership for e-Government.

He is currently the director of International Center for Electronic Commerce and Humanitas Big Data Research Center.

He founded Benple Inc., the Button Internet company, and Allwinware Inc., a patented group auction company, and serve as the CEO of Benple and an executive officer of Allwinware.

Seung-Il You, Kakao Mobility

Seungil You is the head of datalab at Kakao Mobility, where he is leading the research effort for building an AI system that leverages spatiotemporal data. He earned his PhD on mathematical optimization, and started his career at Google as a software engineer where he designed machine learning models to improve service qualities and open sourced TensorFlow Lattice. Currently, his main work is developing AI systems that can operate at scale and improve Kakao Mobility's core services. He also wrote many papers in machine learning, control and decision, and communication.

Channy Yun, Amazon Web Service Korea

Channy Yun is a Principal Technical Evangelist at Amazon Web Services and works with Korean developers to enable them to use AWS cloud services. He has over 20 years of experience in various information systems such as geospatial, content management, e-commerce platform, and building their large-scale API systems such Daum Search and Maps APIs. Now he has special interests in cloud native architectures such as serverless, container, mobile/IoT, and machine learning.

Donghan Kim, Korea Research Institute for Human Settlements

Donghan Kim is a research fellow at the Geospatial Analytics Center in the Korea Research Institute for Human Settlements. His researches are focused on developing and applying urban and regional models for planning policy. His recent modelling work covers the following themes: urban sprawl and growth, urban decay and regeneration, urban gentrification and segregation, firm dynamics and employment location, regional disparity and balanced development, etc.

Contents

Session 1 : What is Geospatial Al

Keynote Speech 1 Place in Geographic Information Science
New Approaches to Space-Time Analytics of Human Dynamics
New Business Models integrating Artificial Intelligence and Geospatial Information
Session 2 : New and Smart Geospatial Information Industries with Al
Keynote Speech 2
Geo Al for Smart New Industries
• Brett Dixon, General Manager, Asia Pacific at ESRI
AI for Smart Mobility
• Seung-II You, Head of Datalab, Kakao Mobility
Geospatial Information and Machine Learning Application in Japan
• Yoshiki Ogawa, Project Researcher, The University of Tokyo
Cloud-powered Machine Learnings on Geospatial Services - From the Earth to Your Home
 A Deep Learning Approach for Simulating Urban Development

인공지능과 공간정보가 함께하는 미래사회

The Future of Geospatial AI

Session 1: What is Geospatial Al

Keynote Speech 1 Place in Geographic Information Science

• Stephan Winter, Professor, The University of Melbourne

New Approaches to Space-Time Analytics of Human Dynamics

• May Yuan, Professor, The University of Texas at Dallas

New Business Models integrating Artificial Intelligence and Geospatial Information

• Kyoung-Jun Lee, Professor, Kyung Hee University

Keynote Speech 1

Place in Geographic Information Science

Stephan Winter Professor, The University of Melbourne

Place in Geographic Information Science

Stephan Winter

winter@unimelb.edu.au

Department of Infrastructure Engineering, The University of Melbourne, Australia

Abstract

The human concept of place is not only vague in its meaning, but also often vague in the spatial extent of its instances (e.g., 'Yellow Sea', 'Bukhansan', or 'downtown'). When people describe where something is, or how to find to somewhere, they refer to places. Their descriptions typically use qualitative spatial relationships (such as 'near', 'at', 'in', or 'left') of no less vagueness. Both concepts, places and their qualitative relationships, are not adequately matched with content of spatial databases. Thus, machines have substantial difficulties to interpret spatial common language (text or voice). I will report from our ongoing research on capturing the spatial knowledge in human place descriptions in a knowledge base, and linking this knowledge with spatial databases. Long-term we aim to achieve a meaningful, context-bound dialog between user and machine on locations.

This research has been funded by the Australian Research Council, grants LP100200199 and DP17100109.

Place in cognition and communication

- "place cells", "grid cells" (O'Keefe and Nadel 1979, Moser et al. 2008)
- "cognitive graph" (Chrastil and Warren 2014)
- landmark route survey knowledge (Siegel and White 1975)
- learning from environment and from abstractions of environment

Thorodyke and Haves-Roth 198

- Maps
- Sketches

(e.g., Lynch 1960, Krukar et al. 2018 – route vs survey)

Verbal (identifiers and relationships; e.g., Vasardani et al. 2013, Belouaer et al. 2013: directional vs configurational)

- Pointing (polar coordinates / path integration)
- Behaviour
 (e.g., leading)

"Naïve geography"

- Naive Physics is the body of knowledge that people have about the surrounding physical world (Hayes 1978)
- Naive Geography is the body of knowledge that people have about the surrounding geographic world

(Egenhofer & Mark 1995)

 Requires a set of theories that provide the basis for designing systems that follow human intuition

Qualitative spatial relationships

(Egenhofer 1989, Randell et al. 1992, Mark et al. 1995)

- Qualitative spatial relations
 - unary, binary, ternary
 - expressed in prepositions, verbs, sketches, or formally in topology, geometry and first order logic
- Formal models for
 - topological relations (Egenhofer 1989, Randell et al. 1992)
 - directions (cardinal, relative) (Frank 1991, Freksa 1991)
 - distances (Worboys 2001)

Qualitative spatial reasoning

(Freksa 1991, Frank 1991, Egenhofer 1991, Cohn 1996, Renz 2002, Ligozat 2013)

- By formal models:
 - Composition tables (Egenhofer 1991)
 - Calculi (Cohn 1996)
 - -SparQ (Wolter 2009)
- Limited tools for cross-family reasoning

A matter for communication

 news items, travel guides, websites, social media, captions, search queries, navigation systems, location-based services, voice assistants

In voice assistants:

Voice assistants in self-driving cars CES 2018, MBUX

Reading sketches or maps

> Matching with environment

Embodied

experience

Listening to

descriptions

Decision making

Place in MELBOURNE	human experi Cognitive spatial representations	ence (updating)
Drawing sketches or maps of locations and directions Reading sketches or maps	Embodied experience	Describing locations and directions Listening to descriptions
	Matching with environment	
	Decision making	

Place in human experience				
	Cognitive spatial representations			
Drawing sketches or maps of locations and directions		Describing locations and directions		
Reading sketches or maps	Embodied experience	Listening to descriptions		
More specific Intrinsically spatial	Matching with environment	Less specific Symbolic, sequential		
Schwering et al. (2014): SketchMapia: Qualitative Representations for the Alignment of Sketch and Metric Maps	Decision making	Daniel et al. (1996): Modes of Linearization in the Description of Spatial Configurations		

17

Indoor conceptualizations

MELBOURNE

- Levels of detail
 - indicate a hierarchical structure (Richter and Winter 2011; IndoorGML 2016)
 - chosen for task at hand

Connectivity (topology)

- has least detail
- (roughly) matches granularity of indoor descriptions

A formulaic place description

My office is in Block B, on the third floor, opposite the kitchen.

- Configurational knowledge
- No instructions how to find it

- Vasardani, M.; Timpf, S.; Winter, S.; Tomko, M. (2013): From Descriptions to Depictions: A Conceptual Framework. In: Tenbrink, T. *et al.* (Eds.), *Spatial Information Theory*. Lecture Notes in Computer Science, 8116. Springer, Cham, pp. 299-319.
- Khan, A.; Vasardani, M.; Winter, S. (2013): Extracting Spatial Information From Place Descriptions. In: Scheider, S. et al. (Eds.), ACM SIGSPATIAL Workshop on Computational Models of Place 2013. ACM Press, Orlando, FL, pp. 62-69.
- Liu, F. (2013): Automatic identification of locative expressions from informal text. Master thesis, Computing and Information Systems, The University of Melbourne, Melbourne, Australia.
- Chen, H.; Vasardani, M.; Winter, S.; Tomko, M. (2018): A Graph Database Model for Knowledge Extracted from Place Descriptions. International Journal of Geo-Information, 7 (6): Paper 221.
- Chen, H.; Vasardani, M.; Winter, S. (2017): Geo-referencing Place Extracted from Natural Language Descriptions. ArXiv e-prints.
- Kim, J.; Vasardani, M.; Winter, S. (2015): Harvesting large corpora for generating place graphs. In: Bertel, S. et al. (Eds.), International Workshop on Cognitive Engineering for Spatial Information Processes (CESIP), in conjunction with COSIT 2015, Santa Fe, NM.
- Kim, J.; Vasardani, M.; Winter, S. (2017): Similarity matching for integrating spatial information extracted from place descriptions. International Journal of Geographical Information Science, 31 (1): 56-80.
- Kim, J.; Vasardani, M.; Winter, S. (2017): Landmark Extraction from Web-Harvested Place Description. Künstliche Intelligenz, 31 (2): 151-159.
- Hamzei, E.; Chen, H.; Hua, H.; Tomko, M.; Vasardani, M.; Winter, S. (2018): Deriving place graphs from spatial databases. In: Peters, S.; Khoshelham, K. (Eds.), Research@Locate 2018. CEUR, Adelaide, Australia, pp. 25-32.
- Winter, S.; Hamzei, E.; van de Weghe, N.; Ooms, K. (2018): A Graph Representation for Verbal Indoor Route Descriptions. In: Creem-Regehr, S.; Schöning, J.; Klippel, A. (Eds.), Spatial Cognition XI. Lecture Notes in Artificial Intelligence, 11034. Springer, Berlin.
- Hamzei, E.; Li, H.; Vasardani, M.; Baldwin, T.; Winter, S.; Tomko, M. (submitted): Place questions and humangenerated answers: A data analysis approach.

New Approaches to Space-Time Analytics of Human Dynamics

May Yuan Professor, The University of Texas at Dallas

New Approaches to Space-Time Analytics of Human Dynamics

May Yuan

myuan@utdallas.edu University of Texas at Dallas

Abstract

Human dynamics broadly include human activities and interactions in space and time. To-date, research on human dynamics in space and time is fueled by ambient data from social media, call detailed records, GPS devices, social internet of things, sensor networks, and various governmental open data source. Traditional GIS methods are inadequate to handle such massive, messy, and disaggregate space-time data. In this talk, I will present three new approaches to eliciting and analyzing patterns of human dynamics in space and time. I will focus on three conceptual constructs of human dynamics: movement, event, and interaction. For each construct, I will present new conceptual and computational bases with a case study. Specifically, I will use GPS trajectory data to understand movement patterns, use crime events to elicit criminogenic places, and use international trade data to uncover interaction trends. The most important objective is to distill how movement, event, and interaction vary in space and time. Machine learning methods play a key role in achieving the objective in these cases. While there are many published studies on movement analysis, event prediction, and interaction modeling, this talk will show how the new approaches to space-time analytics can reveal novel insights. With the cases, I wish to communicate the importance of developing new conceptual and computational approaches to understanding human dynamics and call for new space-time thinking beyond the current GIS framework.

Human Dynamics

- No universally accepted definition
- People act and interact in space and time
- Individually and collectively
- Manifest in
 - Movement
 - Event
 - Interaction

From Movement to Patterns of Life

With Atsushi Nara

GPS Offender Monitoring Systems

- Solve overcrowded prisons
 > Release low-risk offenders
- Reduce rising incarceration costs
 Average cost for GPS-based supervision is approximately \$5 to \$10
- Reduce increasing incarceration and recidivism rates
 Deter negative behavior by monitoring

- Automatic detection of violation
- Evolution of space-time tracking patterns
- Automatic detection of abnormal patterns
- Automatic detection of possibility of meetings
- Automatic detection of potential social networks

Example: Text analysis to compare tracks (by day)

Event_e

Space or Time

Event_e

Event_e

International Trade: from bilateral interactions to trending trading patterns

With Wei Lou

Barbieri, Katherine, Omar M. G. Keshk, and Brian Pollins. 2009. "TRADING DATA: Evaluating our Assumptions and Coding Rules." Conflict Management and Peace Science. 26(5): 471-491.

X			· ≠ SERT PA	GE LAYOUT	FORML	ILAS [ATA RE	VIEW VI	W ACR	OBAT	year2009 TEAM	- Excel									
ľ	Paste		Calibri +		11 • A A	(- »·	📴 Wrap Text		Gene	General				1				ΣΑ	AutoSum -	
Pa			в I Ц • 🖽 •		<u>ð</u> - <u>A</u>	• 15 3				- 5 -	% ,	÷.8 →.8	Cor For	nditional For matting * T	mat as (able = Sty	lell In les =	sert Delet	e Format	20	Clear *	
Clipboard 12		Font			G.	AI	ignment		G .	Number	15		Styl	es		Cells	Cells		Editir		
4	A	В	с	D	E	F	G	н	1	1	K	L		M	N	0	P	(2	R	
1	code	country	United Sta	Canada	Bahamas	Cuba	Haiti	Dominicar	Jamaica 1	Frinidad a	Barbados	Domin	nica	Grenada	St. Lucia	St. Vind	en Antigu	a & St. Ki	tts ar l	Mexico B	
2		1 United Sta	0	180387	2700.83	586.74	870.76	5510.95	1895.58	2188.12	444.95	5 8	4.37	65.23	149.6	85.	14 :	157 :	177.1	123677	
3		2 Canada	228376	0	148.25	302.13	39.26	147.76	106.64	263	57.5	5	4.6	5.78	10.55	11.	92 19	.12	8.32	8034.12	
4	1	3 Bahamas	844.9	28.78	0	0	0.09	141.24	2.25	6.65	0.22	2	0.18	0.34	0.16	0.	06 0	.34	0.03	3.33	
5		4 Cuba	0	488.18	0.71	0	15.54	19.65	4.01	0.64	0.32	2	0	0.07	0.21	0.	01	-9	0	14.41	
6		5 Haiti	566	20.94	0.4	0	0	14.48	0.17	0.45	0.11	1	0.02	0	0.05	0.	03	0	0.06	14.78	
7	1	6 Dominica	3420.7	142.95	5	27.12	775.85	0	50.12	13.63	6.3	3	5.45	1.98	5.56	3.	33 6	.63	3.22	134.71	
8		7 Jamaica	501	160	3.39	4.22	7.58	2.62	0	23.31	9.49)	2.49	2.81	6.73	2.	72 5	.66	5.53	4.38	
9		8 Trinidad a	5623.8	309.78	76.14	40.45	13.5	206.59	637.73	0	453.78	3 5	0.46	143.18	146.04	87.	04 54	.52	62.3	211.06	
0	- 3	9 Barbados	33.9	8.35	4.34	0.01	1.7	4.42	13.96	66.4	0)	7.03	11.99	30.89	19.	13 14	.24	4.73	0	
1	1	0 Dominica	2.9	0.38	0.17	(0.02	0.01	11.14	6.87	3.22	2	0	1.08	5.77	0.	89 11	.47	5.06	0	
2	1	1 Grenada	6.1	0.5	0	0	0	0	0.36	0.41	1.88	3	6	0	8.51	0.	82 6	.09	4.75	0	
3	1	2 St. Lucia	19.1	2.32	0.01	(0	0	1.29	5.99	6.43	3	7.17	5.47	C	2.	48 6	.69	1.99	0	
4	1	3 St. Vincen	1.2	0.22	0.01	0	0	0	0.38	8.26	6.09	9	4.83	4.6	7.35		0 3	.78	2.03	0	
5	1	4 Antigua &	9.5	0.43	0.15	-5	0	0.67	0.07	0.34	0.6	5	1.31	0.89	1.87		0.1	0	3.34	0	
6	1	5 St. Kitts an	56.6	7.2	0	-5	0	0	0.01	0.08	0.17	7	1.4	0.37	0.45	(.4 0	.55	0	0	
7	1	6 Mexico	178335	16081.4	18.47	275.88	25.34	629.81	115.45	104.2	C)	0	0	0		0	0	0	0	
8	1	7 Belize	108.1	6.85	0.06	0.26	0.03	3.06	6.91	10.21	1.95	5	0.07	0.02	0.11	0.	14 0	.93	0	9.38	
9	1	8 Guatemal	3379.1	257.43	1.53	25.03	19.77	116.92	27.94	9.82	2.39)	0.9	0.8	1.05	(0.5 0	.37	0.47	549.42	
10	1	9 Honduras	3489.7	133.37	0.72	1.58	7.72	33.35	4.75	3.45	3.68	3	0.02	0.85	3.24	(0.1 0	.76	0.07	194.19	
1	2	0 El Salvado	1881.1	61.6	1.06	4.54	3.82	74.48	7.77	3.56	0.45	i	0	0.15	0	0.	01	0	0	78.17	

International bilateral trade data: 1870 to 2009 from the Correlates of War (COW) project. In 2009 US dollars for pairs of 205 sovereign states. Based on IMF data and other state reports when necessary. In case of country name changes, record the data based on state list with the COW state membership list.

Instead of modeling spatial interactions of state pairs, can we seek how a state develops international trade patterns and in comparison with other states?

I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail.

(Abraham Maslow)

The tools we use have a profound and devious influence on our thinking habits, and therefore on our thinking abilities.

– Edsger Dijkstra –

AZQUOTES

New Business Models integrating Artificial Intelligence and Geospatial Information

Kyoung-Jun Lee

Professor, Kyung Hee University

New Business Models integrating Artificial Intelligence and Geospatial Information

Kyoung Jun Lee klee@khu.ac.kr, leekj@benple.com Prof. of Kyung Hee University & CEO of Benple Inc.

인공지능과 공간정보가 함께하는 미래사회

The Future of Geospatial AI

Session 2: New and Smart Geospatial Information Industries with Al

Keynote Speech 2 Geo Al for Smart New Industries • Brett Dixon, General Manager, Asia Pacific at ESRI

Al for Smart Mobility

• Seung-II You, Head of Datalab, Kakao Mobility

Geospatial Information and Machine Learning Application in Japan

• Yoshiki Ogawa, Project Researcher, The University of Tokyo

Cloud-powered Machine Learnings on Geospatial Services - From the Earth to Your Home • Channy Yun, Tech Evangelist, Amazon Web Service Korea

A Deep Learning Approach for Simulating Urban Development

• Donghan Kim, Research Fellow, KRIHS

Keynote Speech 2

Geo AI for Smart New Industries

Brett Dixon General Manager, Asia Pacific at ESRI

Geo AI for Smart New Industries

Brett Dixon

BDixon@esri.com General Manager for Asia Pacific, Esri

Memo

Memo

AI for Smart Mobility

Seung-II You Head of Datalab, Kakao Mobility

AI for Smart Mobility

Seung Il You sean.you@kakaomobility.com Kakao Mobility Datalab.

Table of contents

- Artificial intelligence
- Al in Map
- Al in On-demand matching

Artificial intelligence

- Artificial intelligence
 - A system that can make a prediction and decision
 - Route planning, logistics planning, etc
- Machine learning
 - A scalable approach to build an AI system
 - Use data to learn a pattern
 - o ARIMA, SVM, Boosted tree, etc
- Deep learning
 - A scalable approach to build an ML system
 - Excels at perception tasks, e.g., computer vision

Spatiotemporal information and AI

- Geo + Time information is a key
- Existing statistical approach
 - STARIMA, DTWarp, etc.
- Deep learning approach rises
 - CNN + LSTM
 - Graph CNN, etc.

kakaomobility

Al in Map

- Map is a core to smart mobility.
- Utilizing geospatial information is critical for faster and better map related services
- On-going research areas
 - Traffic forecasting
 - Routing
 - Map matching

Historical data:

Aggregated speed of each link (road)

Question:

How do we predict a future traffic speed?

Time series approach

- Utilizing a temporal pattern
- How about geospatial information?

source: [카카오AI리포트] 카카오내비 예측의 정확성 그리고 AI, https://brunch.co.kr/@kakao-it/193 kakaomobility

Traffic forecasting with CNN

Capturing spatial dependency is a key!

Table 3. Prediction	performance	(MSE)	of the	CNN	and	other	algorithm
---------------------	-------------	-------	--------	-----	-----	-------	-----------

Study Network	Model	MSE of Different Models (on Test Datasets)					
		Task 1	Task 2	Task 3	Task 4		
Network 1	CNN	22.825 *	24.345 *	30.593 *	31.424 *		
	OLS	27.047	31.273	41.334	48.107		
	KNN	51.700	55.708	60.256	64.132		
	RF	35.092	35.431	40.476	40.638		
	ANN	67.764	52.339	58.797	57.225		
	SAE	60.751	69.082	65.292	68.326		
	RNN	33.408	36.833	40.551	39.038		
	LSTM NN	37.759	33.218	42.909	42.865		
Network 2	CNN	27.163 *	28.479*	37.987 *	38.816*		
	OLS	33.741	41.657	50.123	62.282		
	KNN	69.965	74.863	79.367	83.881		
	RF	48.603	48.946	52.676	53.067		
	ANN	124.937	147.489	133.299	168.136		
	SAE	85.079	94.982	82.271	99.020		
	RNN	48.877	47.470	52.577	52.114		
	LSTM NN	43.304	45.657	50.928	48.345		

Study Network	Model	Accuracy Score of Different Models (on Test Datasets)					
		Task 1	Task 2	Task 3	Task 4		
Network 1	CNN	0.939 *	0.942 *	0.925 *	0.928 *		
	OLS	0.935	0.929	0.915	0.909		
	KNN	0.901	0.897	0.893	0.890		
	RF	0.917	0.917	0.910	0.910		
	ANN	0.869	0.876	0.852	0.865		
	SAE	0.867	0.870	0.866	0.866		
	RNN	0.908	0.913	0.898	0.900		
	LSTM NN	0.910	0.908	0.901	0.905		
Network 2	CNN	0.938 *	0.936 *	0.920 *	0.922 *		
	OLS	0.929	0.920	0.907	0.897		
	KNN	0.886	0.884	0.879	0.876		
	RF	0.898	0.898	0.893	0.892		
	ANN	0.794	0.867	0.823	0.832		
	SAE	0.846	0.835	0.848	0.825		
	RNN	0.901	0.900	0.896	0.896		
	LSTM NN	0.903	0.907	0.901	0.895		

Table 4. Prediction performance (accuracy) of the CNN and other algorithms.

SOURCE: Ma, Xiaolei, et al. "Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction." Sensors 17.4 (2017)

kakaomobility

Routing

Data:

Road link structure

Starting and end point

Question:

How to route?

Hub algorithm

Construct hubs to accelerate the computation time

Q) How to select the right hub?

A) Still in progress.. Spatial information is the key!

kakaomobility

Map matching

Data points:

GPS measurements (red dots) are noisy and sparse.

Question:

Can we map it to the actual link (road)?

Map recap

- 1. Traffic forecasting
 - Deep learning rises
- 2. Routing
 - Faster algorithms with geospatial index
- 3. Map matching
 - From noisy measurements to the accurate geospatial information

Al in on-demand matching

- Our platform provides on-demand matching services (like Uber and Didi)
- Matching on-demand request is hard because of geological and time constraints
- On-going research
 - Demand prediction
 - Al matching

kakaomobility

Demand prediction

Historical data:

Aggregated taxi demand at each location

Question:

Can we predict a future taxi demand?

Traffic forecasting with CNN

• CNN can capture spatial pattern.

source: Ma, Xiaolei, et al. "Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction." Sensors 17.4 (2017)

kakaomobility

CNN + LSTM?

source: https://knowyourmeme.com/photos/538731-why-not-both-why-dont-we-have-both

AI for smart mobility

Our AI systems connect people and help our users to explore the world.

Geospatial Information and Machine Learning Application in Japan

Yoshiki Ogawa

Project Researcher, The University of Tokyo

Geo spatial information and machine learning application in Japan

Yoshiki Ogawa

ogawa@csis.u-tokyo.ac.jp Institute of Industrial Science, The University of Tokyo

Abstract

Recent years have accumulated a dramatic growth of geo spatial data (e.g., smart phone GPS and CDRs, satellite images, building data, vehicle-mounted smartphone images, business transaction data, and tweets). Geo spatial data contain all kinds of information about the real world and human behavior and urban model, thus offering great opportunities for analyzing and mining vast amounts of GIS data ("big geo data") to support Local government and citizens tasks and optimize decision making in many kinds of application. However, raw accumulated Geospatial data cannot yet accurately understand real world; as such, involving machine learning in the loop of interactive data mining is essential. In this talk, I will present the application of Geo-spatial data and machine learning, an interactive data analysis tool for estimate people flow and disaster damage to enable us to perform intelligent information analysis in decision making support framework. Geospatial data and AI would allow us to see and estimate useful hidden information buried in large amounts of accumulated data that would otherwise be unknown to us. As examples of data mining, I will present some general AI algorithms that we have recently used for joint analysis of geospatial information data to discover availability of new application for geo spatial science in Japan.

Self introduction

Yoshiki Ogawa 29

Born in Tokyo- Chiba - NY - Chiba

2016~ Project Researcher, Center for Spatial Information Science and Institute of Industrial Science, The University of Tokyo (Sekimoto Lab)

2016 Ph.D, 2013 MS Graduate School of Frontier Sciences, The University of Tokyo(Shibasaki Lab.)

Hobby : Cat, Breeding high quality shrimp, Cooking, mountain climbing, Pokémon go, Tabe log

Today's Agenda

- 1. Geo big data in Japan
- 2. AI for road damage detection
- 3. AI for disaster management

09/13/18

Geo big data in Japan

• Proposed how to use this app in the whole system

Method

Image processing by Deep Neural Network Model

Result

By only taking a photo of the road, with more than 90% accuracy only in 1 second, Road Damage Status Judgement!!

09/13/18

Introducing AI to reduce the burden on site

Background

Citizen reports & Sharing information

Background

Examples of incident report system

System	System Since		Area	
Chiba Report (Chiba-repo)	Chiba Report August 2014 (Chiba-repo)		Chiba City	
Cambridge iReport	December 2011	Public sector	Cambridge, MA	
City sourced	City sourced September 2009		Location independent	
Standard open311 Specification	June 2009	Consortium/ Public	Location independent	
SFC	September 2008	Start-up	Location independent	
Ushahidi	January 2008	Start-up/ NPO	Location independent	
FixMyStreet	February 2007	NPO	UK, Japan	
NYC311 online	March 2003	Public sector	New York City	

09/13/18

Purpose

Proposed System **00:6** Light-Weighted Road Manager Image you take Classification results Classify Damaged Need to Repair Classified in 1.348 secs CLASSIFY You can also load images from your android folder LOAD IMAGE DOWNLOAD MODEL Download latest model \Box 5 09/13/18 **Proposed System Overview of the proposed** svstem Local Government **Government inspection** Server by Road Manager Fine tuning Step 3 smartphone Model training Upload problem images on Server Step 2 Update the model improved, found damaged Step 4 pavement. Please fix it! Citizens Find local problems Judge by Android app Step 1 09/13/18

2018 International Conference on Geospatial Information Science

2018 International Conference on Geospatial Information Science

Result

Confusion Matrix (Model3)

Actual							
Model3			Dan	Precision			
		Smooth	No Need Repair	Need Repair			
u	s Smooth		395	8	3	97.3%	
edictic	Damaged	No Need Repair		414	38	76.4%	
ď	Damagou	Need Repair	15	78	459	83.2%	
Recall		79.0%	82.8%	91.8%	Overall Accuracy 84.5%		

09/13/18

Expansion of the Targeted Area

We expand the targeted area this year! Muroran-shi														
Adachi-ku Chiba-shi														
				and a second	Est.	24	R	52-10				Yokoha	ama-sh	i
09/13/18 C And more														
 ・全自 ・総撮傷 ・損しの ・分類 ・分類 https 	・ 全自治体の総走行時間: 300時間・ 総撮影枚数: 163,664枚・ 損傷候補画像(深層学習による): 37,282枚・ 													
	D00 車輪走 行部	D01 施工 ジョイ ント部	D10 間隔が 均等	D11 施工 ジョイン ト部	D20 車輪走 行部	D21 舗装面 全域	D30 わだち 掘れ	D40 段差・ポット ホール・剥 離	D43 横断歩 道のか すれ	D44 白線の かすれ	difficult	TOTAL	総撮影 枚数	損傷候補画 像(学生)
室蘭市	734	1241	106	437	822	876	25	497	73	893	69	5773	62,620	20,713
沼津市	627	1425	234	656	558	415	24	556	180	1304	14	5993	25,032	4,081
足立区	501	1072	169	439	96	27	44	88	246	1034	12	3728	25,015	1,717
墨田区	140	675	21	172	29	14	18	75	239	589	3	1975	23,926	1,300
千葉市	189	230	6	20	32	3	2	13	115	333	1	944	13,291	496
市原市	146	108	19	15	48	20	6	12	24	197	2	597	2,460	258
長久手市	470	898	175	382	225	222	38	165	118	1092	6	3791	11,320	1,623
合計	2807	5649	730	2121	1810	1577	157	1406	995	5442	107	22,801	163,664	30,188
H. Maeda, Y. Sekimoto, T. Seto, T. Kashiyama, H. Omata, Road Damage Detection and Classification Using Deep Neural Networks with Smartphone Images, Computer-Aided Civil and Infrastructure Engineering, 2018 (Accepted)														

26

World's first road damage image release

各自治体の皆様にご協力いただいて収集した道路損傷データを公開しました (世界初!) (<u>https://github.com/sekilab/RoadDamageDetector</u>)

Distribution of damaged parts in each local

Researchers from the world will be connected immediately

IEEE Big Data Conference2018 @USA:

09/13/18018-05-11

"Road Damage Detection and Classification Challenge"

 USA(11), China(8), India(6), Poland(4), Germany(3), South Korea(3), France(2), Taiwan (2), Philippines(2), Pakistan(1), Vietnam(1), Morocco(1), Canada(1),

Important information about this challenge will be announced through this website. Do not forget to check the website on a regular basis

Road AI: Provision to municipalities as a dashboard

Validation

N fold cross validation(N=10)							
Accuracy	Multi Logit	Lasso SVM	RF	Lasso Logit			
Gender	62.2%	64.4%	63.4%	63.5%			
Age	59.8%	66.6%	62.4%	59.8%			

Error Matrix of Age estimation(Lasso SVM)

	Predict data								
	Under 20 21-65 65 over User's accuracy								
assified data	Under 20	589	835	66	0.395				
	21-65	183	3798	767	0.799				
	65 over	77	929	1173	0.538				
0	Producer accuracy	0.694	0.683	0.585	Over all: 0.660				

Error Matrix of gender estimation(Lasso SVM)

		Predict da	ita	
Classified data		Man	Woman	User's accuracy
	Man	1803	2056	0.467
	Woman	1072	3486	0.765
		0.627	0.629	Over all: 0.628

09/13/18

Tsunami evacuation simulation

Estimate supply chain network disruptions due to earthquake

Cloud-powered Machine Learnings on Geospatial Services - From the Earth to Your Home

> *Channy Yun* Tech Evangelist, Amazon Web Service Korea

Cloud-powered Machine Learnings on Geospatial Services - From the Earth to Your Home

Channy Yun

channyun@amazon.com Amazon Web Services Korea

Abstract

Modern machine learning (ML) with problem-solving algorithms and its open source software libraries allows us to approach geospatial applications that were beyond reach a few years ago. They need to scale massive amounts of geospatial data for both training and prediction steps, and the increasing availability of cloud computing services and affordable graphics processing units (GPUs) eases accessibility to supercomputing capacity. Amazon SageMaker is a fully managed service that enables developers and data scientists to quickly and easily build, train, and deploy ML models at any scale, which it removes the barriers that typically slow down developers who want to use ML. By using Amazon SageMaker, DigitalGlobe's cache rate improved by more than a factor of two, often being around 83% and sometimes trending to 90% cache hit. This allowed them to also cut their cloud storage cost in half by better utilizing their S3 optimized cache and retrieving less from their 100+ PB Archive. Also, it enables the Geospatial Big Data platform called GBDX, a horizontally scalable compute environment for analyzing satellite imagery. SpaceNet, Development Seed and EOS are using ML to make a corpus of high-resolution satellite imagery and labeled training data and unlock fully automated ML pipeline from human-in-the-loop initial processing passes.

Amazon has expanded ML to solve specific spatial problems such as identifying inventory defects in Amazon's warehouses by harnessing computer vision and deep learning based on robotics' location predictions of delivery packaging, Amazon Prime Air — a delivery system to safely get packages to customers in 30 minutes within a 10-mile radius of a fulfillment center by GPS-navigated drones with sensing environments and self-driving avoid technologies. Recently Amazon Go introduces "Just Walk Out" technology that enables shoppers to purchase goods without the need for lines or checkout in an offline store based on computer vision by an array

of fusion sensors, cameras and image recognition with deep learning algorithms. Amazon Alexa has powered innovations of home intelligence - virtual assistant features by voice recognition in many devices including Amazon Echo. It is expected to expand new applications that combine a variety of spatial information and artificial intelligence in logistics centers, shops, and home.

Modern GIS research is characterized by data-driven ML tools to solve challenging open research questions which often required to extract spatial semantics, spatial object relationships, tags associated with objects embedded in geographical coordinates. Earth on AWS initiatives - https://aws.amazon.com/earth are available for anyone to conduct research using Earth Observation data on AWS. Students, educators, and researchers can build planetary-scale applications in the cloud with open geospatial data.

CONTENTS

- 1. Deep Learning and Cloud Computing
- 2. Amazon SageMaker Fully Managed DL Service
- 3. Case Study ML on Geospacial Services
 - Digital Globe
 - Development Seed
 - SpaceNet
- 4. Geospatial AI nearby You Amazon Cases
 - Amazon Fullfillment, PrimeAir, Go and Alexa
- 5. Earth on AWS and Research Credits Program

이미지 패턴 분석

음성 인식 및 자연어 처리

자율 주행 자동차

3

利因: Linux/UNIX 0 2 543.81 54.98 <u>世口間后</u> 24世 53.74 52.49	1스킨스 유왕 93.2xlarge 23 일찍 법판 331월 2	날려 2/28/2018 11:55:13 PM UTC+0900 온다면트 가격 54.9810 가용 양역 가격 40-northeast-2a \$1.4950 20-northeast-2c \$1.5131
30.00 Dec 16 Dec 24 Jan	Spot Instances (75% ↓)	Mar 8

The SpaceNet Dataset is an open repository of over 5,700+ km² of satellite imagery across 5 cities, 520,000+ vectors, and a series of challenges to accelerate geospatial machine learning.

A Deep Learning Approach for Simulating Urban Development

Donghan Kim Research Fellow, KRIHS

A Deep Learning Approach for Simulating Urban Development

Donhan Kim

dhkim@krihs.re.kr KRIHS(Korea Research Institute for Human Settlements).

Contents

- Introduction
- Concept of Urban Model
- A Deep Learning based Urban Model
 - Model Structure
 - Technological Framework
- Experimental Case Study
 - Study Area
 - Data
 - Intermediate results
- Inconclusion and Future Work

Introduction

Research Goals

- To develop a urban growth simulation model by using a deep learning algorithm
- To understand usability of artificial intelligence for decision support and urban planning

Acknowledgement

 This work is a part of an ongoing research project at the Korea Research Institute for Human Settlements(KRIHS)

"Improvement of Urban Planning System in Korea"

- 2018. 1. 1 12. 31
- Aims to suggest new directions and policy measures
 - Prediction of urban growth and development for scientific urban planning policy

Principal Investigator: Dr. Yong-Woo Lee

Concept of Urban Model

Trend of Urban Modelling

- Firstly appeared in the late 1950's and early 1960's
- Many different types of urban models over 50 years
 - Similar purpose but heterogeneous theories and methods
 - From static and aggregated to dynamic and disaggregated model

Source: Iacono, Levinson, and El-Geneidy(2008)

(reality)

Outcomes State

- Iterative implementation of "deep learning-probability calculation-constraint application-growth allocation"
- Multi level structure
 - Micro level probability by endogenous model
 - Global level constraint by exogenous model

- Open source software of deep learning and artificial intellegence
- Developed by Google Brain Team and firstly released in 2015
- https://www.tensorflow.org

- **TensorFlow** libraries in R
 - TensorFlow

— R

F	R Interface to TensorFlow	
R		TensorFlow
TensorFlow ¹⁴⁴ is an open-source software library for and Estimator APIs, and when you need more contro	Machine Intelligence. The R Interface to TensorFlow lets I provides full access to the core TensorFlow API:	you work productively using the high-level Keras
Keras API	Estimator API	Core API
The Keras API for TensorFlow provides a high- level interface for neural networks, with a focus on enabling fast experimentation.	The Estimator API for TensorFlow provides high- level implementations of common model types such as regressors and classifiers.	The Core TensorFlow API is a lower-level interface that provides full access to the TensorFlow computational graph.

Experimental Case Study

Study Area

- Ulsan Metropolitan City
 - The largest industrial city and the richest city in Korea (GRDP per capita o \$65,000 in 2017)
 - 1.2 million people
 - Lack of available land in the city area
 - Sprawling development in urban fringe areas and open spaces

New Urban Development

- Planning
 permission
 between 2010 2016
- About 5,000 individual cases
- Took place un urban fringe area

Input Data

- Initial variables were chosen based on literature review (subject to further expansion)
- Maps and statistical data of 2015 onwards
- Tessellated into 50m*50m grid cells

Variable	Description	Туре
Dependent		
Y	0 – non urban, 1-urban	Dichotomous
Independent		
X1	Population density (block, person/ha)	Continuous
X ₂	Distance to the nearest road (m)	Continuous
X ₃	Distance to the nearest railway station (m)	Continuous
X4	Distance to CBD (m)	Continuous
X5	Distance to the nearest primary school (m)	Continuous
X6	Distance to the nearest retail shop (m)	Continuous
X ₇	Development Control (Greenbelt)	Dichotomous
X ₈	Elevation (m)	Continuous
X9	Slope (degree)	Continuous

Probability of Urban Development

- Calculation of probability by using coefficients of the model
- Similar to the result of spatial logistic regression modelling
 - Static and stochastic at the moment

Implication

- Deep learning algorithms and AI technologies provide a new opportunity for modelling spatial and temporal dynamics of urban systems
- Thanks to open source libraries, application of deep learning algorithm and AI technology is possible without a large scale investment and development

Limitation

- In general, deep learning algorithms require a greater amount of data to improve model accuracy, which could result in "data hungriness" in model building.
- It is difficult to understand the relationship among variables and/or neurons, which could result in "black box" in decision making.
- There is no clear way to determine a best fit network structure, which could result in "adhoc model building".

Future Works

- More trial and Errors
 - Data : different input data sets
 - Algorithm : different neural networks
- Integration with other modelling methods
 - Deep learning and agent based modelling
 - Macro or regional models for the external constraints

	KRIHS Watersteiners
Thank you!	
Questions and comments.	
dhkim@krihs.re.kr	