국토정책 Brief

KRIHS POLICY BRIEF • No. 495

발행처 | 국토연구원 • 발행인 | 김경환 • www.krihs.re.ki

활동기반 교통시뮬레이션을 활용한 미래국토 교통수요 예측방안

유서연 국토연구원 책임연구원 이백진 국토연구원 연구위원

요 약

□ 교통수요 추정량은 교통 인프라 투자결정의 중요한 근거이므로 정확성과 신뢰성이 요구됨

■ 교통수요 변화요인에 대한 설명력을 높여서 현재 사용되고 있는 수요추정 방법을 보완할 수 있는 방법론이 요구되고 있음

② 미래에는 인구구조 변화, 라이프스타일 변화, 기술 발전 등에 의해 현재와는 다른 활동과 통행패턴이 예상됨

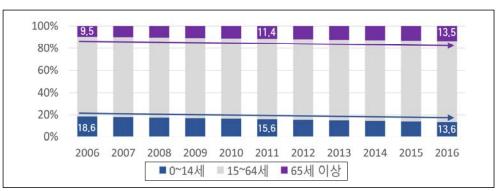
- 고령화, 저출산 등 인구 변화로 사람들의 교통수요 구조에 바뀌고 있음
- 여가활동 다변화 등 라이프스타일 변화로 통행의 유발요소가 바뀌고 있음
- ICT. 자동운전 등 기술의 활용이 개인의 행동패턴에 영향을 미칠 것으로 예상됨

③ 활동기반모형은 통행중심의 교통수요예측과 달리 통행을 일으키는 근본 원인인 이동 후의 목적활동을 고려하므로 교통수요변화 요인에 대한 인과관계 설명이 가능함

■ 해외에서는 인구·사회·경제 등의 다양한 교통수요 변화요인을 고려한 교통수요를 예측하기 위해 활동기 반모형에 기반한 교통시뮬레이션 연구와 활용이 활발하게 이루어지고 있음

④ 국내에서도 미래를 내다보는 교통정책과 인프라 투자계획을 세우기 위해서는 활동기반 교통시뮬레이션의 개발·활용이 필요함

■ 정부 3.0에 의한 데이터 공개와 빅데이터 활용의 활성화로 더욱 설명력 높은 모형을 구축하고 모형의 예측치를 검증하는 것이 가능해져 수요 예측의 신뢰성을 높일 수 있을 것으로 기대됨


정 책 방 안

- ① 인구·사회·경제·기술 등 변화하는 여건이 교통수요에 미치는 영향을 예측하고 교통정책 의사결정을 지원하기 위해 교통수요 변화의 인과관계를 잘 설명하는 활동기반모형을 활용하고 교통수요 예측방법을 다변화할 필요가 있음
- ② 활동기반모형을 이용한 교통수요 예측체계를 갖추기 위해서는 장기적 시각으로 행태모형을 포함한 활동기반 시뮬레이션 개발에 투자할 필요가 있음
- ③ 활동기반모형과 함께 미래국토의 공간구조를 예측하는 토지이용모형, 국토의 현재 모습을 보여주는 빅데이터 등을 융합하여 교통수요 예측체계를 과학적으로 발전시킬 필요가 있음

1. 교통수요 추정의 중요성과 추정방법 개선의 필요성

- 교통수요 추정량은 교통 인프라 투자결정의 중요한 근거이므로 정확성과 신뢰성이 요구됨
 - 오랜 시간동안 교통수요 추정을 위해 통행을 모형의 대상으로 하는 통행기반모형이 사용되어 왔으나, 최근 일부 사례에서 예측치와 실제값의 차이가 발생하여 추정방법의 정확성과 신뢰성에서 하계를 보였음
 - 사람이 한 장소에서 다른 장소로 이동할 때 그 목적은 통행 자체가 아니라 이동 후 수행할 활동이므로, 통행만 고려해서는 교통수요를 정확히 예측하고 수요변화요인을 파악하기 어려움
 - 따라서 현재 사용되고 있는 수요추정 방법을 보완하기 위해 교통수요 변화요인에 대한 설명력을 높일 수 있는 방법론이 요구되고 있음
- 미래에는 인구·경제·사회·기술 등 다방면에서 교통수요구조의 변화요인이 예상됨
 - 고령화와 저출산으로 인구 구성이 변화하고(〈그림 1〉 참조) 이에 따라 교통수요구조가 달라짐
 - 여성의 사회진출 확대로 가정 내 역할이 변화하고, 여가활동이 다변화되는 등 라이프스타일에 변화가 일어나 활동과 통행의 유발요소가 바뀌고 있음
 - 정보통신기기의 사용으로 이동 중에도 다양한 정보 활용이 가능해져 통행에 소요되는 시간의 가치가 변화되었으며, 앞으로는 카셰어링 서비스의 활성화, 자동운전의 실용화 등 다양한 기술의 활용으로 개인의 행태에 변화가 일어날 것이 예상됨

그림 1 고령화와 저출산에 의한 인구구조 변화(2006~2016)

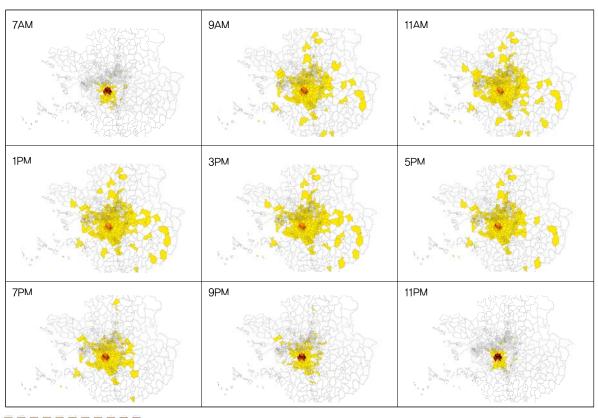
자료: 국가통계포털, http://kosis.kr

- 따라서, 인구·사회·경제·기술 등에서 일어날 여건변화가 교통수요에 어떠한 영향을 미칠 것인지 예측하고 정책결정을 지원할 수 있는 방법이 필요함
 - 경제적 여건이 나아지면서 경제성장을 위한 인프라의 양적 확충보다는 인프라의 질적 개선과 사람 위주의 정책으로 정책의 목표 또한 변화하고 있음
 - 총량적 접근이 아니라 개인의 삶에 미치는 영향을 중요시하는 정책방향에 부응하도록 구체적이고 미시적인 지표를 생성할 수 있는 모형이 필요함

2. 활동기반모형의 특성과 활용사례

● 통행기반모형과 활동기반모형의 비교

- 활동기반모형은 의사결정의 결과로 나타나는 통행의 총량이 아니라 통행을 일으키는 근본 원인인 개개인의 활동참여를 설명하는 모형이므로, 미래의 상황에서 통행수요 변화를 예측하고 정책대안을 마련하기 위한 활용도가 높음
 - 존 간 통행의 총량을 추정하는 통행기반모형과 달리 활동기반모형은 개인의 의사결정을 모형화하 기 때문에 정책이나 환경변화가 각 개인에게 미치는 영향을 정량화하는 것이 가능함
 - 활동기반모형은 분 단위의 시뮬레이션 결과를 도출하므로, 하루를 첨두와 비첨두 시간대로 나누는 모형화 방법과 비교하여 시간대 단위는 물론 분 단위로 일어나는 교통량 변화까지 세밀하게 나타낼 수 있음
 - 활동기반모형은 개인에게 하루 중 일어나는 의사결정 결과에 일관성을 유지하도록 하므로 정책의 2·3차적 파급효과를 추정하는 것이 가능함(예: 정책의 시행으로 출근 시 교통수단 선택에 영향을 미치면 그 파급효과가 퇴근 시 교통수단 선택에서도 나타남)


● 해외의 활동기반모형 활용 사례

- 해외에서는 활동기반모형을 사용하여 다양한 교통수요 변화요인을 고려하는 사례가 존재
 - SimAGENT(Simulator of Activities, Greenhouse (gas) Emissions, Networks, and Travel): 남캘리포니아 정부연합에서는 온실가스 저감을 위해 장·단기 행태변화 및 유가변화에 대한 교통수요탄력성을 반영할 수 있는 행태모형을 포함한 활동기반모형을 개발함
 - ALBATROSS(A Learning Based Transportation Oriented Simulation System): 네덜란드 에인트호벤 대학에서 개발된 이 모형은 개인의 학습이론에 기반한 행태모형을 활용한 모형으로 네덜란드, 벨기에, 서울 등의 적용연구 사례가 있음
 - SF-CHAMPS(San Francisco Chained Activity Modeling Process): 샌프란시스코 카운티의 활동기반모형으로, 자전거 통행이 많이 일어나는 지역 교통특성에 대응하여 스마트폰으로 자전거 통행 대한 상세 데이터를 수집하고 그것을 활동기반모형에 반영하는 등의 활용이 이루어지고 있음
 - SimTRAVEL(Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land):
 미국 애리조나에서 개발되고 있는 모형으로, 단시간 내에 일어나는 교통수요변화에 의한 도로교통 상황변화를 정밀하게 모형화하기 위해 활동기반모형과 동적통행배분(Dynamic Traffic Assignment)을 결합한 형태임

3. 한국형 활동기반모형의 개발과 시사점: ACTOR1)를 중심으로

- 국토연구원에서는 2013년과 2014년에 걸쳐 한국형 활동기반모형의 원형모형(prototype)으로 ACTOR를 개발하고 수도권을 대상으로 그 정책활용성을 확인하였음
 - 활동기반모형은 누가 언제 어디서 무엇을 하는지를 분단위로 시뮬레이션하므로, 하루 중 모든 시점의 통행량과 통행발생원인을 분석할 수 있음(그림 2: 안양시민이 하루 동안 다양한 활동을 수행하기 위해 다른 지역으로 이동했다가 주거지로 돌아오는 패턴을 시뮬레이션한 결과임)
 - 활동기반모형은 개개인의 시·공간적 활동범위를 도출하므로, 한 지역에 정책이 시행되었을 때 거주자 외에 어떤 사람이 영향을 받는지 분석하고, 그에 따른 교통정책의 파급효과를 평가하는 것이 가능함
 - 활동과 통행을 시뮬레이션함에 있어 개인특성뿐 아니라 토지이용의 영향이 반영되므로, 지역특성을 반영한 교통정책 수립이 가능함

그림 2 안양시민의 시간대별 활동 위치(그림에 표시된 영역은 서울, 경기, 인천을 포함하는 수도권)

적음 --- 활동수 --- 많음 흰색: 4명 이하의 활동

¹⁾ ACTOR: ACTivity-based micro-simulatOR. SimAGENT 모형의 활동기반 시뮬레이션 모듈인 CEMDAP(Comprehensive Econometric Micro-simulator for Daily Activity-travel Patterns)의 구조와 행태모형을 한국화하여 개발함.

- 활동기반모형은 개인의 행태뿐 아니라 사회적 변화에 의해 가구 내에서 일어나는 활동의 배분 변화도 반영 가능함
 - 예를 들어, 수도권에 사는 부부 중 여성의 사회활동이 늘어나 현재보다 취업률이 20% 증가했다고 가정할 경우, 낮시간 동안 여성의 장보기를 포함한 쇼핑활동이 줄어들고 퇴근 후 저녁시간에 집중될 것으로 나타났으며, 남성도 가사 관련 활동을 더 많이 할당받아 남성의 저녁시간 쇼핑이 늘어날 가능성이 있는 것으로 테스트 결과 나타났음(〈그림 3〉참조)

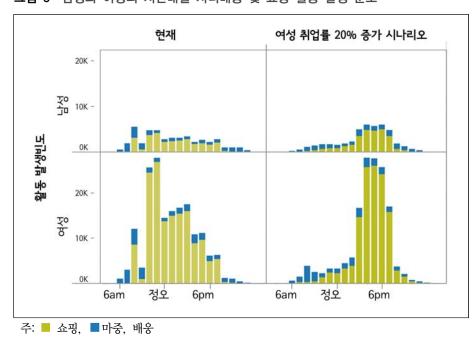


그림 3 남성과 여성의 시간대별 자녀배웅 및 쇼핑 활동 발생 분포

- 수도권 데이터에 기반하여 활동기반모형을 테스트한 결과 다음과 같은 사항에서 정책적 활용성이 있을 것으로 분석됨
 - 고령화, 저출산 등 인구구조변화와 저성장에 따른 경제·사회 변화, 유가변동 등의 외부적 요인 등에 따른 단-장기 교통수요변화를 예측함으로써 교통기반시설의 신규투자 및 운영을 위한 정책지원에 기여할 수 있음
 - 교통정책의 패러다임이 기반시설의 양적 확대에서 질적 개선으로 전환됨에 따라 단·중기 교통수 요 영향을 미시적으로 평가하여 계층별, 지역별 맞춤형 교통정책 수립을 지원할 수 있음
 - 복지와 사회적 형평성 문제가 강조되는 시점에서 활동기반모형은 기존 통행기반모형에 비해 새로운 평가지표(접근성, 삶의 질, 사회적 평등지수 등) 산출에 효과적이며, 이를 기반으로 정부 주요 국정비전(국민행복) 평가에 활용 가능함

4. 미래 교통수요 예측을 위한 활동기반모형의 활용

- 미래에 인구·사회·경제·기술 등 다양한 분야에서 일어날 여건변화가 교통수요에 미칠 영향을 예측하고 교통정책을 지원하기 위해서는 의사결정모형의 다변화 필요
 - 교통수요 예측방법을 보완하여 정확성과 신뢰성을 높일 수 있도록 한국형 활동기반모형의 개발과 정책활용이 필요함
 - 통행기반모형이 적용되고 있는 교통 관련 주요 법정계획 수립에 ACTOR 모형 등 새로운 분석방법론을 시도하여 계획의 효과성을 가늠해보고, 정책의 실효성을 제고할 필요가 있음
 - 우리보다 앞서 활동기반 시뮬레이션을 개발을 시작한 선진국들은 모형개발에만 5~10년 정도를 투자할 정도로 충분한 개발기간과 지속적인 개선과정을 거치고 있음
 - 따라서, 국가적 차원에서 활동기반모형을 개발하고 일정수준의 예측력을 확보할 수 있도록 지속적으로 유지·관리하는 장기적인 투자가 필요함
- 활동기반모형과 함께 미래국토의 공간구조를 예측하는 토지이용모형, 국토의 현재 모습을 보여주는 빅데이터 등을 융합하여 교통수요 예측체계를 발전시킬 필요가 있음
 - 정부 3.0의 기조 아래 다양한 자료가 공개되고 있어, 현재보다 정교하고 설명력 높은 모형을 만들 수 있는 가능성이 높아짐
 - 국토의 장기적 공간구조 변화를 예측하는 토지이용 모형과 활동기반모형을 융합하여 활용하면 단-장기 국토-교통계획 및 정책의사결정에 있어 효용이 더욱 높을 것으로 예상됨
 - 교통카드 데이터, 이동통신 이용자 위치분포 데이터, 통행량 데이터 등 모형에 의한 시뮬레이션 결과를 검증할 수 있는 빅데이터의 활용이 가능하게 되어, 활동기반모형에 의한 수요추정치를 검증하고 신뢰성을 높일 수 있을 것으로 기대됨

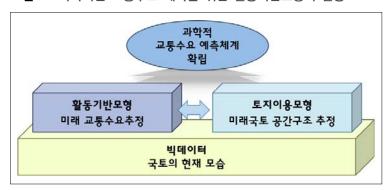


그림 4 과학적인 교통수요 예측을 위한 활동기반모형의 활용

윤서연 국토연구원 국토인프라연구본부 책임연구원(syyoon@krihs.re.kr, 031-380-0362)

이백진 국토연구원 국토인프라연구본부 연구위원(bjlee@krihs.re.kr, 031-380-0373)

