

A Study on Development & Application of the Level of Service for ITS

29, May. 2008

Kyoung ah, Rhee

(Korea Research Institute For Human Settlement)

Contents

Introduction

Definition & development concept of ITS LOS

Development of ITS LOS

Application of ITS LOS

Conclusion

Introduction

Research background

- ITS in Korea has been promoted in major cities since 1997
- Evaluation on ITS-Service is important for the promotion of ITS
- Recently, the needs of development of the level of service in ITS has been raised.

Objective

- To develop the index to measure the level of service in ITS and apply this index in major cities in Korea

Definition & development concept of ITS LOS

ITS LOS (Level Of Service) ?

- As a comprehensive index it shows the ITS service level of selected cities, which is calculated by integrating indicators deduced from each individual service

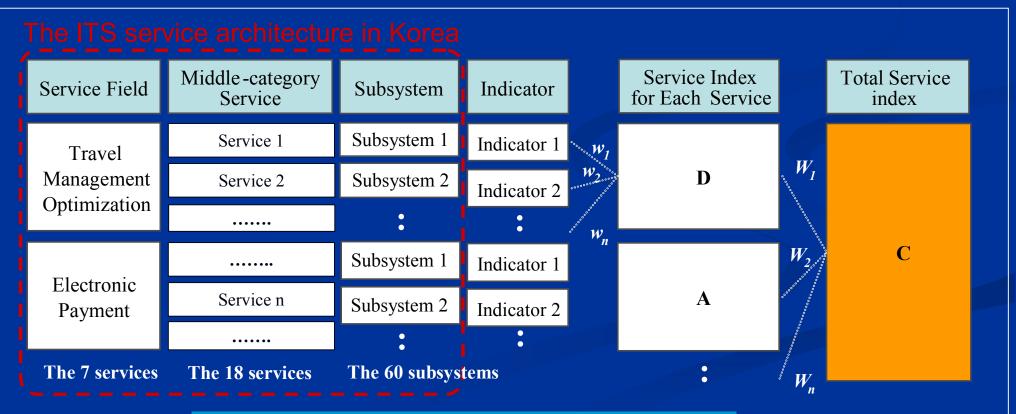
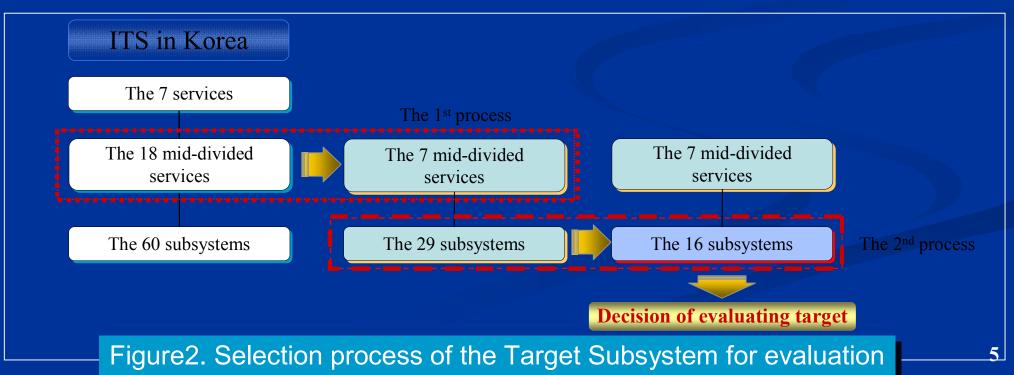



Figure1. The concept of developing ITS LOS

Deduction of evaluating target service/subsystem

- 11 mid-divided services which not suitable for urban unit evaluation are excluded
- As a result, ITS LOS will be developed for targeting
 16 subsystems consist of the 7 mid-divided services

- The review of installation status of ITS facilities in major cities in Korea (BIS 23 cities)
- In order to evaluate the supply level of ITS subsystem, the installation standard for each ITS facility is necessary

Table 2. The average interval of ITS facilities and key map

ITS Facilities	Mean Distance	Average interval between facilities installed in the cities reviewed in this paper	Seoul
VMS	2.75km (expressway) ※ in arterial 6 km	 Expressway : Seoul(0.52km), Daejeon(4.97km) Arterial : Jeonju(5.3km), Jeju(9.2km), Ulsan(8.2km), Gwacheon(1.8km) 	Gwacheon Daejeon
CCTV	7 km	 Expressway : Seoul (1.09km), Daejeon (3.73km) * Expressway information related system Arterial : Ulsan (2.9km), Gwacheon (1.6km), Jeonju (2.6km), Daejeon (17.2km) * Traffic management system related 	Jeju
IDS	0.5 km	- Seoul (0.5km)	$\langle \mathcal{O} \rangle$

The standard for the interval of facilities is different according to the facility and road type

- this presentation shows only the enforcement system

* Please see the conference paper for more details

Table 3. The Standard Installation Interval of the Enforcement System		Travel S 100	peed(km/h)							
Interval of the Enio	rcement System	90	•			Direct	ly affected	section		
Road type	Road type Arterial road		-							
Directly affected section	0.5km ahead / 0.5km behind	60 50 40				****	*******			
Indirectly affected Section	4km ahead / 1km behind	30 20 10 0			1	1		→ Obser → Limite	ved speed - d speed -	
Distance affected		Ŭ	4km ahead	3km ahead	1km ahead	0.5km ahead	Camera spot	0 <u>.</u> 5km behind	1km behind	
by the enforcement system	5km	Figure3. The Travel Speed Profile of the Enforcement Camera Installation Section								

- **Calculation of the evaluation indicator (M_{ij})**
 - The indicators are presented as follows;
 - Installed service scale being currently provided in a city

The install-capacity in the future (standard)

- This concept is the same with Volume/Capacity (LOS) in traffic flow theory
 - * Please see the conference paper for more details

Table 4. The	Indicator dedu	icted for each s	subsystem ((example)
--------------	----------------	------------------	-------------	-----------

Subsystem	Indictor
Urban Arterial Traffic	The number of real-time signal control intersections \div
Signal Control Subsystem	The total number of the signal intersections
Urban Arterial Priority	The number of priority treatment signal intersections ÷
Treatment Signal Control subsystem	The total number of signal intersections

Step1 : Designation of the evaluation indicator weight

The weight (w_{ij}) of each subsystem is decided according to the implement priority from national ITS architecture
 * Please see the conference paper for more details

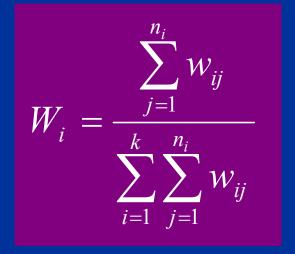
Table 5. The priority score for each subsystem from national ITS architecture

Grade(Number)	Sub-system	Priority score	Total
A (4)	 Urban arterial traffic signal control Urban expressway traffic management Speed violation enforcement 	4	16
B (2)	- Urban arterial variable lane control - Bus information	3	6
C (7)	 Urban arterial wide-area traffic information/incident management Urban expressway incident management Urban expressway traffic-flow coordination Bus lane management Bus operation management Public transportation fare collection 	2	14
D (3)	 Urban arterial priority treatment signal / wide-area traffic signal control Traffic signal violation enforcement 	1	3
	Total		39

Table 6. The Weight (w_{ij}) for each subsystem in a middle-category service

ITS somulas (Middle satagame)	Sub system (priority soors)	The Weight (<i>w_{ij}</i>)		
ITS service (Middle-category)	Sub-system (priority score)	urban+suburban	urban	
	Urban arterial traffic signal control (4)	0.24(4/17)	0.36(4/11)	
	Urban arterial priority treatment signal control (1)	0.06(1/17)	0.09(1/11)	
	Urban arterial variable lane control (3)	0.18(3/17)	0.27(3/11)	
Troffic flow monogoment	Urban arterial wide-area traffic signal control (1)	0.06(1/17)	0.09(1/11)	
Traffic flow management	Urban arterial wide-area traffic information (2)	0.12(2/17)	0.18(2/11)	
	Urban expressway traffic management (4)	0.24(4/17)	-	
	Urban expressway traffic-flow coordination (2)	0.12(2/17)	-	
	Total	1(17/17)	1	
	Urban arterial incident management (2)	0.5(2/4)	1.0(2/2)	
Incident management	Urban expressway incident management (2)	ent (2) 0.5(2/4)		
	Total	1(4/4)	1	
	Speed violation enforcement (4)	0.7(5/7)		
Automatic traffic enforcement	Traffic signal violation enforcement (1)	0.7(577)	
Automatic traffic enforcement	Bus lane management (2)	0.3(2/7	7)	
	Total	1(7/7)		
Electronic toll collection	Public transportation fare collection (2)	1.0(2/2)		
Traffic informationRegional traffic information (4)		1.0(4/4)		
Public transportation information	Bus information (3)	1.0(3/3	3)	
Public transportation management	Bus operation management (2)	1.0(2/2)		
	Total	39 (31)	

 Step2 : The computation for each service index (SI_i)
 The individual ITS service index (SI_i: Service index of service *i*) for each middle service is calculated by multiplying the weight (w_{ij}) by the value of the indicator * Please see the conference paper for more details



where:

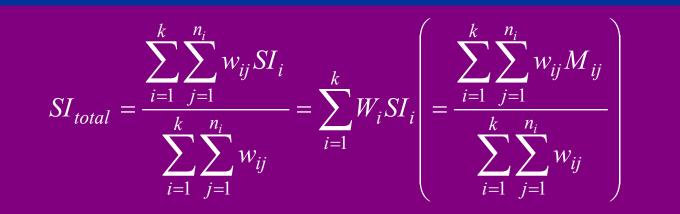
SI_i: the value of the ITS service index i
M_{ij}: the value of the evaluation indicator j in the ITS service i
w_{ij}: the weight of the evaluation indicator j in the ITS service i
n_i: the number of the evaluation indicator in the ITS service i

Step3 : Calculation of the contribution (W_i)

- The contribution is applicable weight to estimate the ITS service index(SI_{total}) for the all ITS service installed in the city
- The contribution applied in this phase is defined as W_i

where:

 W_i : the contribution of the ITS service index *i* w_{ij} : the weight of the evaluation indicator *j* in the ITS service *i* n_k : the number of the evaluation indicator *i* k: the total number of ITS services evaluated


Step3 : Calculation of the contribution (W_i)

- W_i is calculated differently depending on whether a city has urban expressways or not

Table 7. The Contribution (W_i) for the ITS Service

ITS service	The scores of J	priority order	The contribution for ITS (W _i)		
(Middle-category)	urban+suburban area	urban area	urban+suburban area	urban area	
Traffic-flow management	17	11	43.6	35.5	
Incident Management	4	2	10.3	6.4	
Automatic Traffic Enforcement	7	7	17.9	22.6	
Electronic toll collection	2	2	5.1	6.4	
Traffic Information	4	4	10.3	12.9	
Public transportation Information	3	3	7.7	9.7	
Public transportation Management	2	2	5.1	6.5	
Total	39	31	100	100	

Step4 : Calculation of ITS service index total (SI_{total})
 The total ITS service index (SI_{total}) is finally estimated by applying the contribution (W_i) for the ITS service

Where ; SI_i : the value of the ITS service index of the ITS service i M_{ij} : the value of the evaluation indicator j in the ITS service i W_i : the contribution of the ITS service index i w_{ij} : the weight of the evaluation indicator j in the ITS service i n_k : the number of the evaluation indicator ik: the total number of ITS services evaluated

Application of ITS LOS

Four cities is chosen for the application of *ITS LOS*

Table 8. The subsystem currently being operated in case cities

Classification of	Calegratore	The case cities				
ITS services	Subsystem	Daejeon	Bucheon	Jeonju	Ulsan	
TT 1 1	Urban arterial traffic signal control	\bigcirc	×	\bigcirc	\bigcirc	
Urban arterial related system	Traffic information	\bigcirc	×	\bigcirc	\bigcirc	
Telated System	Incident management	\bigcirc	×	\bigcirc	\bigcirc	
TT 1	Urban expressway traffic management	\bigcirc	×			
Urban expressway related system	Traffic information	\bigcirc	\times	No urban expressway		
Tenated system	Incident management	\bigcirc	\times			
Enforcement system	Speed violation enforcement	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Enforcement system	Traffic signal violation enforcement	\bigcirc	\bigcirc	\times	\bigcirc	
	Bus information	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
Bus related system	Bus operation management	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	Bus lane management	\bigcirc	\times	\bigcirc	\times	
Toll and fare related	Electronic toll collection	0	×	\times	\times	
system	Public transportation fare collection	0	0	\bigcirc	\bigcirc	

Estimation of ITS service index (SI_i) in case cities

Calculation of ITS Service Index Total (SI_{1}) of the four cities

- the ITS service level of case cities is 50~60% on average
- these cities except for Bucheon have better ITS service environment than any other cities in Korea

Table 5. Calculation of the Cervice Index Fotal (Ortotal) of the roar office								
ITS service	<urban+sub.></urban+sub.>	$<$ urban+sub.> SI_{total} Contribution $(W_i, \%)$ DaejeonBucheon		<urban></urban>	SI _{total}			
(Middle-category)				Contribution (<i>W_i</i> , %)	Ulsan	Jeonju		
Traffic-flow Control	43.6	18.4	10.4	35.5	8.2	13.3		
Incident Management	10.3	-	-	6.5	6.5	6.5		
Automatic Traffic Enforcement	17.9	7.4	9.4	22.4	16.0	16.0		
Electronic toll collection	5.1	5.1	5.1	6.5	6.5	6.5		
Traffic Information	10.3	10.3	-	12.9	12.9	12.9		
Transit Information svc.	7.7	7.7	7.1	9.7	0.7	1.5		
Transit Management	5.1	2.1	5.1	6.5	6.5	6.5		
Total	100.0	51	37.1	100.0	57.3	63.2		

Application of ITS LOS

Comment of the results

- Level of ITS service of these cities is low unexpectedly

- We can say that the ITS service in Korea is not enough to satisfy the user yet

- Also it needs additional investment in human resources and budget for the improvement of ITS services

Conclusion

- The most significant achievement of the study is that
 - an attempt has been made to explore <u>methods to measure</u> the level of ITS services implemented
 - it enables to determine <u>how many ITS facilities</u> <u>it needs to provide ITS services for a city under budget</u> <u>constraint</u>
- The ITS LOS index in this study enables also
 - to present which and how many ITS services or subsystem are necessary under the existing infrastructure condition of a city
 - to forecast <u>what the city needs in the long-term</u> <u>to achieve the political target of ITS</u>

Thank you very much for listening !